Химическая кинетика. Физическая химия химическая кинетика и катализ Понятие химической кинетики

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Общая химия: учебник / А. В. Жолнин; под ред. В. А. Попкова, А. В. Жолнина. - 2012. - 400 с.: ил.

Глава 2. ОСНОВЫ КИНЕТИКИ ХИМИЧЕСКИХ РЕАКЦИЙ

Глава 2. ОСНОВЫ КИНЕТИКИ ХИМИЧЕСКИХ РЕАКЦИЙ

Разница между дыханием и горением только в скорости процесса.

А.-Л. Лавуазье

2.1. ХИМИЧЕСКАЯ КИНЕТИКА. ПРЕДМЕТ И ОСНОВНЫЕ ПОНЯТИЯ ХИМИЧЕСКОЙ КИНЕТИКИ. СКОРОСТЬ РЕАКЦИИ

О направлении, глубине и принципиальной возможности протекания процесса судят по величине изменения свободной энергии (ΔG ≤0). Однако эта величина не говорит о реальной возможности протекания реакции в данных условиях.

Например, реакция взаимодействия закиси азота с кислородом протекает мгновенно при комнатной температуре:

В то же время 2Н 2 (г) + О 2 (г) = 2Н 2 О(ж), Δ°G = -286,8 кДж/моль - реакция, характеризующаяся значительно большим уменьшением свободной энергии, в обычных условиях взаимодействие не протекает, но при 700 °С или в присутствии катализатора процесс протекает мгновенно. Следовательно, термодинамика не отвечает на вопрос условий и скорости протекания процесса. В этом проявляется ограниченность термодинамического подхода. Для описания химической реакции необходимо знать также закономерности ее протекания во времени, которые изучает кинетика.

Кинетика - это раздел химии, изучающий скорость, механизм химических реакций и влияние на них различных факторов.

В зависимости от того, в одной или нескольких фазах находятся компоненты реакции, различают кинетику гомогенных и гетерогенных реакций. По механизму реакции делятся на простые и сложные, поэтому выделяют кинетику простых и сложных реакций.

Основным понятием кинетики реакции является скорость химической реакции. Определение скорости химических реакций имеет биологическое и народно-хозяйственное значение.

Скорость химической реакции определяется количеством вещества, прореагировавшего за единицу времени в единице объема (в случае гомогенных реакций, когда реагирующие вещества находятся в одной фазе) или на единице поверхности раздела фаз (в случае гетерогенных реакций, когда реагирующие вещества находятся в различных фазах).

Скорость реакции характеризуют изменением концентрации какого-либо из исходных или конечных продуктов реакции в функции времени. Уравнение, описывающее зависимость скорости реакции (v) от концентрации (с) реагирующих веществ, называется кинетическим. Скорость реакции чаще выражают в моль/л-с, в биохимии в мг/100мл-с, или в массовой доле, в %/100 мл-с. Различают среднюю скорость реакции в интервале времени и истинную скорость реакции в определенный момент времени. Если в интервале времени t 1 и t 2 концентрация одного из исходных веществ или продуктов реакции равна соответственно с 1 и с 2 , то среднюю скорость реакции (v) в интервале времени t 1 и t 2 можно выразить:

Поскольку речь идет в данном случае об убыли концентрации исходного вещества, т.е. изменение концентрации вещества берется в этом случае со знаком «минус» (-). Если скорость реакции оценивается изменением (увеличением) концентрации одного из продуктов реакции, то со знаком «плюс» (+):

По уравнению (2.2) определяют среднюю скорость химической реакции. Истинную (мгновенную) скорость реакции определяют графически. Строят график зависимости концентрации исходного вещества или продукта реакции (Са) от времени (t) - кинетическую кривую реакции Са - f(t) для нелинейного процесса (рис. 2.1).

В каждый момент времени (например, t 1) истинная скорость реакции равна тангенсу угла наклона касательной к кинетической кривой в точке, соответствующей данному моменту времени. Согласно графику мгновенная скорость реакции будет рассчитываться по формуле:

В биохимии для описания кинетики ферментативных реакций используется уравнение Михаэлиса- Ментен, которое показывает зависимость скорости реакции, катализируемой ферментом, от концентрации субстрата и фермента. Простейшая кинетическая схема, для которой справедливо уравнение Михаэлиса: E + S ES E + P:

Рис. 2.1. Кинетическая кривая

где V m - максимальная скорость реакции; К м - константа Михаэлиса, равная концентрации субстрата, при которой скорость реакции составляет половину от максимальной; S - концентрация субстрата.

Исследование скорости химической реакции позволяют получить информацию о ее механизме. Помимо концентрации скорость реакции зависит от природы реагентов, внешних условий и наличия катализатора.

2.2. МОЛЕКУЛЯРНОСТЬ И ПОРЯДОК РЕАКЦИИ. ПЕРИОД ПОЛУПРЕВРАЩЕНИЯ

В кинетике химические реакции различаются по признаку моле-кулярности и порядка реакции. Молекулярность реакции определяется числом частиц (атомов, молекул или ионов), одновременно участвующих в элементарном акте химического превращения. В элементарном акте реакции могут принимать участие одна, две или три молекулы. Вероятность соударения большего числа частиц очень мала. По этому признаку различают мономолекулярные, бимолекулярные и тримоле-кулярные реакции. Экспериментально молекулярность реакции можно определить только для элементарных (простых) реакций, протекающих в одну стадию в соответствии со стехиометрическим уравнением. Для протекания большинства подобных реакций требуется большая энергия активации (150-450 кДж/моль).

Большая часть реакций - сложные. Совокупность элементарных стадий, составляющих сложную реакцию, называется механизмом реак-

ции. Поэтому для характеристики кинетики реакции вводится понятие порядка реакции, который определяется по стехиометрическому уравнению.

Сумма стехиометрических показателей всех исходных веществ, входящих в уравнение реакции (2.5) (a + b), определяет общий порядок реакции. Показатель, с которым данный реагент входит в уравнение, называют порядком реакции по веществу (частный порядок реакции), например, показатель а - порядок реакции по веществу А, b - по веществу В. Порядок реакции и молекулярность совпадают только для простых реакций. Определяют порядок реакции те вещества, которые влияют на скорость реакции.

К мономолекулярным относятся реакции разложения и изомеризации.

Реакции, в уравнение скорости которых входит концентрация одного реагирующего вещества в первой степени, называют реакциями первого порядка.

В кинетическое уравнение входят вещества, концентрация которых изменяется в процессе реакции. Концентрации веществ, находящихся в значительном избытке, не изменяются в процессе реакции.

Вода в реакции гидролиза карбоната натрия находится в значительном избытке и в кинетическое уравнение не входит.

В гетерогенных системах столкновение частиц происходит на границе раздела фаз, поэтому масса твердой фазы не влияет на скорость реакции и поэтому не учитывается в выражении для скорости реакции.

К бимолекулярным относятся реакции димеризации и реакции замещения, протекающие через стадию активированного комплекса.

Реакции, скорость которых пропорциональна произведению концентраций двух веществ в первой степени или квадрату концентрации одного вещества, называются реакциями второго порядка.

Тримолекулярные реакции редки, а четырехмолекулярные не известны.

Среди биохимических процессов реакции третьего порядка не встречаются.

Реакции, скорость которых не зависит от концентрации исходных веществ, называются реакциями нулевого порядка (v = k).

Пример реакций нулевого порядка - каталитические реакции, скорость которых зависит только от концентрации катализатора. Частным случаем таких реакций являются ферментативные реакции.

В биохимических процессах участвуют, как правило, несколько реагентов (субстрат, кофермент, кофактор). Иногда не все они известны. Поэтому за ходом процесса судят по одному веществу. При этом количественной характеристикой протекания реакций во времени является период (время) полупревращения реагента - время, за которое количество или концентрация исходного вещества уменьшается в два раза (на 50%) или образуется половина продуктов реакции. Таким способом характеризуют, в частности, распад радионуклидов, так как их период полупревращения не зависит от исходного количества.

Анализируя зависимость периода полупревращения реакции от начальной концентрации, можно определить порядок реакции (способ Оствальда-Нойеса). Постоянством периода полупревращения (при данной температуре) характеризуются многие реакции разложения и вообще реакции первого порядка. С увеличением концентрации реагента период полупревращения уменьшается для реакций второго порядка и увеличивается для реакций нулевого порядка.

2.3. КОНСТАНТА СКОРОСТИ РЕАКЦИИ, ЕЕ ОПРЕДЕЛЕНИЕ. ЗАКОН ДЕЙСТВУЮЩИХ МАСС

Скорость гомогенных реакций зависит от числа встреч реагирующих частиц в единицу времени в единице объема. Вероятность соударения взаимодействующих частиц пропорциональна произведению концентраций реагирующих веществ. Таким образом, скорость реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам соответствующих веществ в уравнении реакции. Указанная закономерность называется законом действующих масс (закон скорости химической реакции), который является

основным законом химической кинетики. Закон действующих масс установлен норвежскими учеными К. Гульдбергом и П. Ваге в 1867 г.

Например, для реакции, протекающей в общем виде, согласно схеме

будет справедливо кинетическое уравнение:

где v - скорость химической реакции; с А и с В - концентрации веществ А и В [моль/л]; v a и v b - показатели порядка по реагентам A и B; k - константа скорости химической реакции - коэффициент, не зависящий от концентрации реагирующих веществ.

Константа скорости химической реакции (k) представляет собой скорость химической реакции в условиях, когда произведение концентраций реагирующих веществ равно 1 моль/л. В этом случае v = k.

Например, если в реакции Н 2 (г) + I 2 (г) = 2НI(г) c(H 2) и c(I 2) равны по 1 моль/л или если c(H 2) равна 2 моль/л, а c(I 2) 0,5 моль/л, то v = k.

Единицы измерения константы равновесия определяются стехиометрией реакции. Константы скорости реакций разных порядков сравнивать между собой некорректно, поскольку они являются разными по смыслу величинами, имеющими разные размерности.

2.4. МЕХАНИЗМ ХИМИЧЕСКИХ РЕАКЦИЙ. КЛАССИФИКАЦИЯ СЛОЖНЫХ РЕАКЦИЙ

Механизм реакций рассматривает все столкновения индивидуальных частиц, которые происходят одновременно или последовательно. Механизм дает детальную стехиометрическую картину каждой ступени реакции, т.е. понимание механизма означает установление молеку-лярности каждой ступени реакции. Изучение механизма химических реакций является очень сложной задачей. Ведь мы же не можем проводить прямые наблюдения за ходом взаимодействия молекул. Полученные результаты иногда зависят от размеров и формы сосуда. В некоторых случаях одни и те же результаты можно объяснить, используя разные механизмы.

Реакция газообразных водорода с йодом Н 2 (г) + I 2 (г) = 2НI(г) считалась классическим примером бимолекулярной реакции второго

порядка, но в 1967 г. Н.Н. Семенов, Г. Эйринг и Дж. Салливэн показали, что она имеет сложный характер и состоит из 3 элементарных реакций: I 2 = 2I; 2I = I 2 ; 2I + H 2 = 2HI. Хотя реакция формально может быть отнесена к тримолекулярным, ее скорость описывается кинетическим уравнением, напоминающим уравнение реакции второго порядка:

В сложных реакциях молекулярность и порядок реакции, как правило, не совпадают. Необычный - дробный или отрицательный - порядок реакции однозначно указывает на ее сложный механизм.

Кинетическое уравнение реакции окисления угарного газа кислородом 2СО(г) + O 2 (г) = СO 2 (г) имеет отрицательный (минус первый) порядок по СО:

при увеличении концентрации угарного газа скорость реакции уменьшается.

По механизму протекания реакции можно разделить на несколько типов.

Последовательными реакциями называют сложные реакции, в каждой из которых продукт (Х 1) первой элементарной стадии вступает в реакцию с продуктом второй стадии, продукт (Х 2) второй стадии вступает в третью и т.д., пока не образуется конечный продукт:

где S - субстрат (исходный реагент); k 1 , k 2 , k 3 ... - константа скорости 1, 2 и т.д. стадий реакции; P - конечный продукт.

Стадии последовательных реакций протекают с различной скоростью. Стадия, константа скорости которой минимальна, называется лимитирующей. Она определяет кинетическую закономерность реакции в целом. Вещества, образующиеся в промежуточных стадиях, называются промежуточными продуктами или интермедиатами, которые являются субстратами последующих стадий. Если интермедиат медленно образуется и быстро распадается, то его концентрация в течение длительного времени не изменяется. Практически все процессы метаболизма являются последовательными реакциями (например, метаболизм глюкозы).

Параллельными реакциями называют реакции, имеющие одни и те же исходные реагенты, которым соответствуют различные продукты. Скорость параллельных реакций равна сумме скоростей отдельных реакций. Это правило применимо и для бимолекулярных параллельных химических реакций.

Последовательно-параллельными реакциями называют реакции, имеющие одни и те же исходные реагенты, которые могут реагировать по двум путям (механизмам) и более, в том числе с разным количеством промежуточных стадий. Данный случай лежит в основе явления катализа, когда интермедиат одного из путей будет способствовать увеличению скорости других путей.

Конкурирующими реакциями называют сложные реакции, в которых одно и тоже вещество А одновременно взаимодействует с одним или несколькими реагентами В 1 , В 2 и т.д., участвует в одновременно протекающих реакциях: А + В 1 → Х 1 ; А + В 2 → Х 2 . Эти реакции конкурируют друг с другом за реагент А.

Сопряженными реакциями называют сложные реакции, в которых одна реакция протекает только в присутствии другой. В сопряженных реакциях промежуточное вещество служит связывающим звеном между первичным и вторичным процессами и обусловливает протекание обоих.

Живая клетка для своего существования нуждается в энергии. Универсальным источником энергии в живых организмах является аде-нозинтрифосфорная кислота (АТФ). Это соединение выполняет функцию аккумулятора энергии, так как при его взаимодействии с водой, т.е. гидролизе, образуются аденозиндифосфорная (АДФ) и фосфорная (Ф) кислоты и выделяется энергия. Поэтому АТФ называется макро-эргическим соединением, а разрывающаяся при его гидролизе связь Р-О-Р - макроэргической. Макроэргической связью называется химическая связь, при разрыве которой в результате реакции гидролиза выделяется значительная энергия:

Как известно, разрыв любой связи (в том числе и макроэргической) всегда требует затраты энергии. В случае же гидролиза АТФ, кроме процесса разрыва связи между фосфатными группами, для которого ΔG >0, происходят процессы гидратации, изомеризации и нейтрализации продуктов, образующихся при гидролизе. В результате всех этих процессов суммарное изменение энергии Гиббса имеет отрицательное

значение. Следовательно, макроэргическим является не разрыв связи, а энергетический результат ее гидролиза.

Для того чтобы в живых системах протекали эндэргонические реакции (ΔG >0), необходимо, чтобы они были сопряжены с экзэрго-ническими реакциями (ΔG <0). Такое сопряжение возможно, если обе реакции имеют какое-либо общее промежуточное соединение, и на всех стадиях сопряженных реакций суммарный процесс характеризуется отрицательным значением изменения энергии Гиббса (∑ΔG сопр.р <0). Например, синтез сахарозы является эндэргонической реакцией и самопроизвольно происходить не может:

Однако сопряжение этой реакции с экзэргонической реакцией гидролиза АТФ, сопровождающееся образованием общего промежуточного соединения глюкозо-1-фосфата, приводит к тому, что суммарный процесс имеет ∑ΔG <0:

Цепными реакциями называют химические и ядерные реакции, в которых появление активной частицы (свободного радикала или атома в химических, нейтрона в ядерных процессах) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Цепные реакции распространены в химии. По цепному механизму протекают многие фотохимические реакции, процессы окисления (горение, взрыв), полимеризации, крекинга. Теория цепных реакций разработана академиком H.H. Семеновым, С.Н. Хиншельвудом (Англия) и др. Основными стадиями цепных реакций являются: зарождение (инициация), продолжение (элонгация) и обрыв цепи (терминация). Различают два типа цепных реакций: реакции с неразветвленными и с разветвленными цепями. Особенность цепных реакций состоит в том, что один первичный акт активации приводит к превращению огромного числа молекул исходных веществ. Биохимические реакции свободно-радикального окисления являются цепными.

Периодическими (автоколебательными) реакциями называют сложные многостадийные автокаталитические реакции с участием нескольких веществ, в которых происходит периодическое колебание концентраций окисленной и восстановленной форм. Колебательные реакции открыты Б.П. Белоусовым, исследованы А.М. Жаботинским и др. Частота и форма колебаний зависят от концентраций исходных веществ, кислот-

ности, температуры. Примером таких реакций может являться взаимодействие броммалоновой кислоты с броматом калия в кислой среде, катализатором служит соль церия (III). Периодические реакции имеют большое значение для биологических объектов, где реакции подобного рода широко распространены.

Реакции твердофазного горения (реакции самораспространяющегося высокотемпературного синтеза, СВС) открыты в 1967 году в Институте химической физики АН СССР А.Г. Мержановым и И.Г. Боровинской. Сущность метода СВС заключается в том, что после локального инициирования реакции взаимодействия реагентов фронт реакции горения самопроизвольно распространяется по всей системе благодаря теплопередаче от горячих продуктов к исходным веществам, инициируя протекание в них реакции взаимодействия. Таким образом, осуществляется процесс горения, который является и причиной, и следствием протекания реакции. Механизм протекания реакций СВС является достаточно сложным и включает в себя процессы реакционной диффузии. Термин «реакционная диффузия» определяет совокупность явлений, происходящих при взаимодействии двух химически различных компонентов, способных образовывать химические соединения в виде твердых фаз. Продукты химического взаимодействия образуют сплошной слой, отличающийся по своему строению от исходных компонентов, но не мешающий протеканию дальнейшего взаимодействия.

2.5. ТЕОРИЯ АКТИВНЫХ СОУДАРЕНИЙ. ЭНЕРГИЯ АКТИВАЦИИ. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ПРИРОДЫ РЕАГИРУЮЩИХ ВЕЩЕСТВ И ТЕМПЕРАТУРЫ

Для того чтобы совершился элементарный акт химического взаимодействия, реагирующие частицы должны столкнуться друг с другом. Однако не каждое столкновение приводит к химическому взаимодействию. Последнее происходит в том случае, когда частицы приближаются на расстояния, при которых возможно перераспределение электронной плотности и возникновение новых химических связей. Взаимодействующие частицы должны обладать энергией, достаточной для преодоления сил отталкивания, возникающих между их электронными оболочками.

Переходное состояние - состояние системы, при котором уравновешены разрушение и создание связи. В переходном состоянии система

находится в течение небольшого (10 -15 с) времени. Энергия, которую необходимо затратить, чтобы привести систему в переходное состояние, называется энергией активации. В многоступенчатых реакциях, которые включают в себя несколько переходных состояний, энергия активации соответствует наибольшему значению энергии. После преодоления переходного состояния молекулы вновь разлетаются с разрушением старых связей и образованием новых или с преобразованием исходных связей. Оба варианта возможны, так как происходят с высвобождением энергии. Существуют вещества, способные уменьшить энергию активации для данной реакции.

Активные молекулы А 2 и B 2 при столкновении объединяются в промежуточный активный комплекс А 2 ...В 2 с ослаблением, а затем и разрывом связей А-А и В-В и упрочнением связей А-В.

«Энергия активации» реакции образования HI (168 кДж/моль) значительно меньше, чем энергия, необходимая для полного разрыва связи в исходных молекулах Н 2 и I 2 (571 кДж/моль). Поэтому путь реакции через образование активного (активированного) комплекса энергетически более выгоден, чем путь через полный разрыв связей в исходных молекулах. Через образование промежуточных активных комплексов происходит подавляющее большинство реакций. Положения теории активного комплекса разработаны Г. Эйрингом и М. Поляни в 30 годах XX в.

Энергия активации представляет собой избыток кинетической энергии частиц относительно средней энергии, необходимой для химического превращения сталкивающихся частиц. Реакции характеризуются различными величинами энергии активации (Е а). В большинстве случаев энергия активации химических реакций между нейтральными молекулами составляет от 80 до 240 кДж/моль. Для биохимических процессов значения Е а зачастую ниже - до 20 кДж/моль. Это объясняется тем, что абсолютное большинство биохимических процессов протекает через стадию фермент-субстратных комплексов. Энергетические барьеры ограничивают протекание реакции. Благодаря этому в принципе возможные реакции (при G <0) практически всегда не протекают

или замедляются. Реакции с энергией активации выше 120 кДж/моль настолько медленны, что их протекание трудно заметить.

Для осуществления реакции молекулы при столкновении должны быть определенным образом ориентированы и обладать достаточной энергией. Вероятность надлежащей ориентации при столкновении характеризуют с помощью энтропии активации ΔS a . Перераспределению электронной плотности в активном комплексе благоприятствует условие, когда при столкновении молекулы А 2 и В 2 ориентированы, как это показано на рис. 2.2, а, тогда как при ориентации, показанной на рис. 2.2, б, вероятность реакции еще гораздо меньше - на рис. 2.2, в.

Рис. 2.2. Благоприятная (а) и неблагоприятные (б, в) ориентации молекул А 2

и В 2 при столкновении

Уравнение, характеризующее зависимость скорости и реакции от температуры, энергии активации и энтропии активации, имеет вид:

где k - константа скорости реакции; A - в первом приближении общее число столкновений между молекулами за единицу времени (секунду) в единице объема; е - основание натуральных логарифмов; R - универсальная газовая постоянная; Т - абсолютная температура; Е а - энергия активации; ΔS a - изменение энтропии активации.

Уравнение (2.8) выведено Аррениусом в 1889 году. Предэкспо-ненциальный множитель A пропорционален общему числу соударений между молекулами в единицу времени. Его размерность совпадает с размерностью константы скорости и, следовательно, зависит от суммарного порядка реакции. Экспонента равна доле активных соударений от их общего числа, т.е. столкнувшиеся молекулы должны иметь доста-

точную энергию взаимодействия. Вероятность же их нужной ориентации в момент соударения пропорциональна e ΔSa/R

При обсуждении закона действующих масс для скорости (2.6) специально было оговорено, что константа скорости есть постоянная величина, не зависящая от концентраций реагентов. При этом предполагалось, что все химические превращения протекают при постоянной температуре. Вместе с тем хорошо известно, что быстрота химического превращения может существенно изменяться при понижении или повышении температуры. С точки зрения закона действующих масс это изменение скорости обусловлено температурной зависимостью константы скорости, так как концентрации реагирующих веществ лишь незначительно меняются вследствие теплового расширения или сжатия жидкости.

Наиболее хорошо известным фактом является возрастание скорости реакций с увеличением температуры. Такой тип температурной зависимости скорости называется нормальным (рис. 2.3, а). Этот тип зависимости характерен для всех простых реакций.

Рис. 2.3. Типы температурной зависимости скорости химических реакций: а - нормальная; б - аномальная; в - ферментативная

Однако в настоящее время хорошо известны химические превращения, скорость которых падает с увеличением температуры. В качестве примера можно привести газофазную реакцию азота (II) оксида с бромом (рис. 2.3, б). Такой тип температурной зависимости скорости называется аномальным.

Особый интерес для медиков представляет зависимость от температуры скорости ферментативных реакций, т.е. реакций с участием ферментов. Практически все реакции, протекающие в организме, относятся к этому классу. Например, при разложении водородперок-сида в присутствии фермента каталазы скорость разложения зависит от температуры. В интервале 273-320 °K температурная зависимость имеет нормальный характер. С увеличением температуры скорость возрастает, с уменьшением - падает. При подъеме температуры выше

320 °K наблюдается резкое аномальное падение скорости разложения пероксида. Сходная картина имеет место и для других ферментативных реакций (рис. 2.3, в).

Из уравнения Аррениуса для k видно, что, поскольку Т входит в показатель степени, скорость химической реакции очень чувствительна к изменению температуры. Зависимость скорости гомогенной реакции от температуры может быть выражена правилом Вант-Гоффа, согласно которому при увеличении температуры на каждые 10° скорость реакции возрастает в 2-4 раза; число, показывающее во сколько раз возрастает скорость данной реакции при повышении температуры на 10°, называется температурным коэффициентом скорости реакции - γ.

где k - константа скорости при температуре t °C. Зная величину γ, можно рассчитать изменение скорости реакции при изменении температуры от T 1 до T 2 по формуле:

При повышении температуры в арифметической прогрессии скорость возрастает в геометрической.

Например, если γ = 2,9, то при возрастании температуры на 100° скорость реакции увеличивается в 2,9 10 раз, т.е. в 40 тыс. раз. Отклонения от этого правила составляют биохимические реакции, скорость которых увеличивается в десятки раз при незначительном повышении температуры. Это правило справедливо лишь в грубом приближении. Реакции, в которых участвуют крупные молекулы (белка), характеризуются большим температурным коэффициентом. Скорость денатурации белка (яичного альбумина) возрастает в 50 раз при повышении температуры на 10 °С. После достижения некоторого максимума (50-60 °С) скорость реакции резко понижается в результате термоденатурации белка.

Для многих химических реакций закон действующих масс для скорости неизвестен. В таких случаях для описания температурной зависимости скорости превращения может применяться выражение:

Предэкспонента А с не зависит от температуры, однако зависит от концентрации. Единицей измерения является моль/л с.

Теоретическая зависимость позволяет заранее рассчитывать скорость при любой температуре, если известны энергия активации и предэкспонента. Таким образом, прогнозируется влияние температуры на быстроту протекания химического превращения.

2.6. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ РЕАКЦИИ. СОСТОЯНИЕ ХИМИЧЕСКОГО РАВНОВЕСИЯ. УРАВНЕНИЕ ИЗОТЕРМЫ РЕАКЦИИ

Химическая реакция не всегда «доходит до конца», другими словами, исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаться условия для протекания реакции в противоположном направлении. Действительно, если, например, смешать пары йода с водородом при температуре ~200 °С, то произойдет реакция: Н 2 + I 2 = 2HI. Однако известно, что йодоводород уже при нагревании до 180 °С начинает разлагаться на йод и водород: 2HI = Н 2 + I 2 .

Химические реакции, которые при одних и тех же условиях могут идти в противоположных направлениях, называют обратимыми. При написании уравнений обратимых реакций вместо знака равенства ставят две противоположно направленные стрелки. Реакцию, протекающую слева направо, называют прямой (константа скорости прямой реакции k 1), справа налево - обратной (константа скорости обратной реакции k 2).

В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а затем уменьшается вследствие уменьшения концентрации исходных веществ. И наоборот, обратная реакция в начальный момент имеет минимальную скорость, которая увеличивается по мере нарастания концентрации продуктов реакции. Наконец, наступает такой момент, когда скорости прямой и обратной реакции становятся равными. Состояние, в котором скорость обратной реакции становится равной скорости прямой реакции, называют химическим равновесием.

Состояние химического равновесия обратимых процессов количественно характеризуется константой равновесия. В момент достижения состояния химического равновесия скорости прямой и обратной реакций равны (кинетическое условие).

где K - константа равновесия, представляющая собой отношение констант скорости прямой и обратной реакций.

В правой части уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии - равновесные концентрации. Это уравнение представляет собой математическое выражение закона действующих масс при химическом равновесии. Особо следует отметить, что в отличие от закона действующих масс для скорости реакции в данном уравнении показатели степени a, b, d, f и т.д. всегда равны стехиометрическим коэффициентам в равновесной реакции.

Численное значение константы равновесия данной реакции определяет ее выход. Выходом реакции называют отношение количества получаемого в действительности продукта к тому количеству, которое получилось бы при протекании реакции до конца (выражается обычно в процентах). Так, при K >>1 выход реакции велик и, наоборот, при K <<1 выход реакции очень мал.

Константа равновесия связана со стандартной энергией Гиббса реакции следующим соотношением:

Используя уравнение (2.12), можно найти значение энергии Гиббса реакции через равновесные концентрации:

Это уравнение называют уравнением изотермы химической реакции. Оно позволяет рассчитать изменение энергии Гиббса при протекании процесса и определить направление протекания реакции:

при ΔG <0 - реакция идет в прямом направлении, слева направо;

При ΔG = 0 - реакция достигла равновесия (термодинамическое условие);

при ΔG >0 - реакция идет в обратном направлении.

Важно понять, что константа равновесия не зависит от концентраций веществ. Справедливо обратное утверждение: в состоянии равновесия сами концентрации принимают такие значения, что отношение их произведений в степенях стехиометрических коэффициентов

оказывается постоянной величиной при данной температуре. Данное утверждение соответствует закону действующих масс и даже может использоваться в качестве одной из его формулировок.

Как было сказано выше, обратимые реакции не протекают до конца. Однако если один из продуктов обратимой реакции покидает сферу реакции, то по существу обратимый процесс протекает практически до конца. Если в обратимой реакции участвуют электролиты и один из продуктов этой реакции представляет собой слабый электролит, осадок или газ, то в этом случае реакция также протекает практически до конца. Необратимыми реакциями называют такие реакции, продукты которых не взаимодействуют друг с другом с образованием исходных веществ. Необратимые реакции, как правило, «доходят до конца», т.е. до полного израсходования хотя бы одного из исходных веществ.

2.7. ПРИНЦИП ЛЕ ШАТЕЛЬЕ

Состояние химического равновесия при неизменных внешних условиях теоретически может сохраняться бесконечно долго. В реальной действительности при изменении температуры, давления или концентрации реагентов равновесие может «сместиться» в ту или иную сторону протекания процесса.

Изменения, происходящие в системе в результате внешних воздействий, определяются принципом подвижного равновесия - принципом Ле Шателье.

Внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

Применительно к трем основным типам внешнего воздействия - изменению концентрации, давления и температуры - принцип Ле Шателье трактуется следующим образом.

При увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества, при уменьшении концентрации равновесие смещается в сторону образования этого вещества.

Влияние давления очень напоминает эффект изменения концентраций реагирующих веществ, но сказывается оно только на газовых системах. Сформулируем общее положение о влиянии давления на химическое равновесие.

При увеличении давления равновесие смещается в сторону уменьшения количеств газообразных веществ, т.е. в сторону понижения давления; при уменьшении давления равновесие смещается в сторону возрастания

количеств газообразных веществ, т.е. в сторону увеличения давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на положение равновесия в этой системе.

При изменении температуры изменяются как прямая, так и обратная реакции, но в разной степени. Следовательно, для выяснения влияния температуры на химическое равновесие необходимо знать знак теплового эффекта реакции.

При повышении температуры равновесие смещается в сторону эндотермической реакции, при понижении температуры - в сторону экзотермической реакции.

Применительно к биосистемам принцип Ле Шателье гласит, что в биосистеме на каждое действие формируется такое же по силе и характеру противодействие, которое уравновешивает биологические регуляторные процессы и реакции и формирует сопряженный уровень их неравновесности.

При патологических процессах существующая замкнутость регу-ляторного контура нарушается. В зависимости от уровня неравновесности изменяется качество межсистемных и межорганных отношений, они приобретают все более нелинейный характер. Структуру и специфику этих взаимоотношений подтверждает анализ зависимости между показателями системы перекисного окисления липидов и уровнем антиоксидантов, между гармоническими показателями в условиях адаптации и патологии. Данные системы участвуют в поддержании антиокислительного гомеостаза.

2.8. ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОПРОВЕРКИ ПОДГОТОВЛЕННОСТИ К ЗАНЯТИЯМ И ЭКЗАМЕНАМ

1.Какие реакции называются гомогенными, а какие гетерогенными? Приведите по одному примеру каждого типа реакций.

2.Какие реакции называют простыми, а какие сложными? Приведите по два примера простых и сложных реакций.

3.В каком случае молекулярность и порядок кинетического уравнения могут численно совпадать?

4.Скорость некоторой реакции с течением времени не изменяется. Изменится ли с течением времени период полупревращения этой реакции, и если изменится, то как? Дайте объяснение.

5.В каком случае истинная (мгновенная) скорость и средняя скорость реакции (в достаточно большом интервале времени) могут совпадать?

6.Вычислите константу скорости реакции A + B → AB, если при концентрациях веществ A и B, равных соответственно 0,5 и 0,1 моль/л, ее скорость равна 0,005 моль/л мин.

7.Период полупревращения некоторой реакции первого порядка равен 30 мин. Какая часть от первоначального количества вещества останется через час?

8.Дать понятие общего порядка реакции и порядка реакции по веществу.

9.Методы определения скорости реакции.

10.Основной закон химической кинетики.

11.Дать понятие механизма химических реакций.

12.Простые и сложные реакции.

13.Сопряженные реакции. От каких факторов зависит константа скорости химических реакций?

14.Скорость реакции действительно пропорциональна произведению концентраций реагирующих веществ в степени их стехиометри-ческих коэффициентов?

15.Какие требуются экспериментальные данные для определения порядка реакций?

16.Напишите кинетическое уравнение реакции H 2 O 2 + 2HI → I 2 + + 2H 2 O, если смешаны равные объемы 0,02 моль/л раствора H 2 O 2 и 0,05 моль/л раствора HI. Константа скорости 0,05 л/моль с.

17.Напишите кинетическое уравнение реакции H 2 O 2 + 2HI → I 2 + + 2H 2 O, учитывая, что она характеризуется первым порядком реакции по концентрациям обоих исходных веществ.

18.Докажите, что скорость химической реакции максимальна при стехиометрическом соотношении компонентов.

19.Перечислите возможные объяснения влияния температуры на скорость реакции.

2.9. ТЕСТОВЫЕ ЗАДАНИЯ

1. Согласно правилу Вант-Гоффа при повышении температуры на 10° скорость многих реакций:

а)уменьшается в 2-4 раза;

б)уменьшается в 5-10 раз;

в)увеличивается в 2-4 раза;

г)увеличивается в 5-10 раз.

2. Количество элементарных актов взаимодействия в единицу времени определяет:

а)порядок реакции;

б)скорость реакции;

в)молекулярность реакции;

г)период полупревращения.

3. Какие факторы влияют на увеличение скорости реакции?

а)природа реагирующих веществ;

б)температура, концентрация, катализатор;

в)только катализатор;

г)только концентрация;

д)только температура.

4. Во сколько раз увеличится скорость реакции 2А(г) + В(г) А 2 В(г) при увеличении концентрации вещества А в 2 раза?

а)скорость не изменится;

б)увеличится в 18 раз;

в)увеличится в 8 раз;

г)увеличится в 4 раза;

д)увеличится в 2 раза.

5. Элементарная реакция А(тв) + 2В(г) АВ 2 (г). Укажите правильное кинетическое уравнение этой реакции:

а)k[A][B] 2 ;

б)k[A][B];

в)к[В];

г)к[В] 2 ;

д)к[А].

6. Как нужно изменить давление в системе, чтобы увеличить скорость реакции А(тв) + 2В(г) АВ 2 (г) в 9 раз?

а)увеличить давление в 9 раз;

б)уменьшить давление в 9 раз;

в)увеличить давление в 3 раза;

г)уменьшить давление в 3 раза.

7. Чему равен температурный коэффициент реакции γ 10 , если при охлаждении реакционной смеси на 30° скорость реакции уменьшилась в 8 раз?

а)16;

б)8;

в)6;

г)4;

д)2.

8. Какая реакция идет быстрее?

а)Е акт = 40 кДж/моль;

б) Е акт = 80 кДж/моль;

в) Е акт = 160 кДж/моль;

г) Е акт = 200 кДж/моль.

Предметом химической кинетики является изучение всех факторов, влияющих на скорость как суммарного процесса, так и всех промежуточных стадий

Энциклопедичный YouTube

    1 / 5

    ✪ Физическая химия. Лекция 3. Химическая кинетика и катализ

    ✪ Коробов М. В. - Физическая химия II - Скорость химической реакции. Формальная кинетика

    ✪ Химия. Кинетика химических реакций. Скорость химической реакции. Центр онлайн-обучения «Фоксфорд»

    ✪ Введение в кинетику

    ✪ Химическая кинетика

    Субтитры

Основные понятия

Гомогенная реакция- реакция, в которой реагирующие вещества находятся в одной фазе

Гетерогенная реакция-реакция, происходящая на границах раздела фаз – между газообразным веществом и раствором, между раствором и твердым веществом, между твердым и газообразным веществами

Реакция называется простой, если продукт образуется в результате непосредственного взаимодействия молекул(частиц) реагентов

Реакция называется сложной, если конечный продукт получается в результате осуществления двух и более простых реакций(элементарных актов) с образованием промежуточных продуктов

Скорость химической реакции

Важным понятием химической кинетики является скорость химической реакции . Эта величина определяет, как изменяется концентрация компонентов реакции с течением времени . Скорость химической реакции - величина всегда положительная, поэтому если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.
Например, для реакции скорость можно выразить так:

A + B → C + D , {\displaystyle A+B\to C+D,} v = ∂ C ∂ t = − ∂ A ∂ t . {\displaystyle v={\frac {\partial C}{\partial t}}=-{\frac {\partial A}{\partial t}}.}

Порядок химической реакции

Порядок реакции по данному веществу - показатель степени при концентрации этого вещества в кинетическом уравнении реакции.

Реакция нулевого порядка

Кинетическое уравнение имеет следующий вид:

V 0 = k 0 {\displaystyle V_{0}=k_{0}}

Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ. Нулевой порядок характерен, например, для гетерогенных реакций в том случае, если скорость диффузии реагентов к поверхности раздела фаз меньше скорости их химического превращения.

Реакция первого порядка

Кинетическое уравнение реакции первого порядка:

V 1 = k 1 ⋅ C = − d C d τ {\displaystyle V_{1}=k_{1}\cdot C=-{\frac {dC}{d\tau }}}

Приведение уравнения к линейному виду даёт уравнение:

ln ⁡ C = ln ⁡ C 0 − k 1 ⋅ τ {\displaystyle \ln C=\ln C_{0}-k_{1}\cdot \tau }

Константа скорости реакции вычисляется как тангенс угла наклона прямой к оси времени:

k 1 = − t g α {\displaystyle k_{1}=-\mathrm {tg} \alpha }

Период полупревращения:

τ 1 2 = ln ⁡ 2 k 1 {\displaystyle \tau _{\frac {1}{2}}={\frac {\ln 2}{k_{1}}}}

Реакция второго порядка

Для реакций второго порядка кинетическое уравнение имеет следующий вид:

V = k 2 C A 2 {\displaystyle V=k_{2}{C_{A}}^{2}} V = k 2 C A ⋅ C B {\displaystyle V=k_{2}C_{A}\cdot C_{B}}

В первом случае скорость реакции определяется уравнением

V = k 2 C A 2 = − d C d τ {\displaystyle V=k_{2}{C_{A}}^{2}=-{\frac {dC}{d\tau }}}

Линейная форма уравнения:

1 C = k 2 ⋅ τ + 1 C 0 {\displaystyle {\frac {1}{C}}=k_{2}\cdot \tau +{\frac {1}{C_{0}}}}

Константа скорости реакции равна тангенсу угла наклона прямой к оси времени:

k 2 = − t g α {\displaystyle k_{2}=-\mathrm {tg} \alpha } k 2 = 1 τ (1 C − 1 C 0) {\displaystyle k_{2}={\frac {1}{\tau }}\left({\frac {1}{C}}-{\frac {1}{C_{0}}}\right)}

Во втором случае выражение для константы скорости реакции будет выглядеть так:

k 2 = 1 τ (C 0 , A − C 0 , B) ln ⁡ C 0 , B ⋅ C A C 0 , A ⋅ C B {\displaystyle k_{2}={\frac {1}{\tau (C_{0,A}-C_{0,B})}}\ln {\frac {C_{0,B}\cdot C_{A}}{C_{0,A}\cdot C_{B}}}}

Период полупревращения (для случая равных начальных концентраций!):

τ 1 2 = 1 k 2 ⋅ 1 C 0 {\displaystyle \tau _{\frac {1}{2}}={\frac {1}{k_{2}}}\cdot {\frac {1}{C_{0}}}}

Молекулярность реакции

Молекулярность элементарной реакции - число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.

Мономолекулярные реакции - реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):

H 2 S → H 2 + S {\displaystyle {\mathsf {H_{2}S\rightarrow H_{2}+S}}}

Бимолекулярные реакции - реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):

C H 3 B r + K O H → C H 3 O H + K B r {\displaystyle {\mathsf {CH_{3}Br+KOH\rightarrow CH_{3}OH+KBr}}}

Тримолекулярные реакции - реакции, элементарный акт которых осуществляется при столкновении трех частиц:

N O + N O + O 2 → 2 N O 2 {\displaystyle {\mathsf {NO+NO+O_{2}\rightarrow 2NO_{2}}}}

Реакции с молекулярностью более трёх неизвестны.

Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции нет, так как порядок реакции характеризует кинетическое уравнение реакции, а молекулярность - механизм реакции.

Катализ

. Примером отрицательного - снижение скорости коррозии при введении в жидкость, в которой эксплуатируется металл, нитрита натрия, хромата и дихромата калия.

Многие важнейшие химические производства, такие, как получение серной кислоты, аммиака , азотной кислоты , синтетического каучука , ряда полимеров и др., проводятся в присутствии катализаторов.

Катализ в биохимии

Ферментативный катализ неразрывно связан с жизнедеятельностью организмов растительного и животного мира. Многие жизненно важные химические реакции, протекающие в клетке (что-то около десяти тысяч), управляются особыми органическими катализаторами, именуемыми ферментами или энзимами. Термину «особый» не следует уделять пристального внимания, так как уже известно, из чего построены эти ферменты. Природа избрала для этого один-единственный строительный материал - аминокислоты и соединила их в полипептидные цепи различной длины и в разной последовательности

Это так называемая первичная структура фермента, где R - боковые остатки, или важнейшие функциональные группы белков, возможно, выступающие в качестве активных центров ферментов. На эти боковые группы и ложится основная нагрузка при работе фермента, пептидная же цепь играет роль опорного скелета. Согласно структурной модели Полинга - Кори, она свернута в спираль, которая в обычном состоянии стабилизирована водородными связями между кислотными и основными центрами:

Для некоторых ферментов установлены полный аминокислотный состав и последовательность расположения их в цепи, а также сложная пространственная структура. Но это все же очень часто не может помочь нам ответить на два главных вопроса: 1) почему ферменты так избирательны и ускоряют химические превращения молекул только вполне определенной структуры (которая нам тоже известна); 2) каким образом фермент снижает энергетический барьер, то есть выбирает энергетически более выгодный путь, благодаря чему реакции могут протекать при обычной температуре.

Строгая избирательность и высокая скорость - два основных признака ферментативного катализа, отличающие его от лабораторного и производственного катализа. Ни один из созданных руками человека катализаторов (за исключением, пожалуй, 2-оксипиридина) не может сравниться с ферментами по силе и избирательности воздействия на органические молекулы. Активность фермента, как и любого другого катализатора, тоже зависит от температуры: с повышением температуры возрастает и скорость ферментативной реакции. При этом обращает на себя внимание резкое снижение энергии активации Е по сравнению к некаталитической реакцией. Правда, это происходит не всегда. Известно много случаев, когда скорость возрастает благодаря увеличению не зависящего от температуры предэкспоненциального множителя в уравнении Аррениуса.

Типы ферментативных реакций

  • Тип «пинг-понг» - фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы. Примером являются реакции переноса аминогрупп от аминокислот на кетокислоты: трансаминирование.
  • Тип последовательных реакций - к ферменту последовательно присоединяются субстраты А и В, образуя «тройной комплекс», после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.
  • Тип случайных взаимодействий - субстраты А и В присоединяются к ферменту в любом порядке, неупорядоченно, и после катализа так же отщепляются.

Термодинамика позволяет с большой точностью предсказать принципиальную возможность протекания процесса и конечное состояние системы, однако она не дает никаких сведений о способах фактической реализации процесса и времени его протекания. В действительности же некоторые процессы протекают настолько быстро, что представляются мгновенными, другие идут настолько медленно, что практически какие-либо изменения в системе не наблюдаются. Не существует какой-либо связи между величиной химического сродства и скоростью реакции. Реакции между веществами с большим химическим сродством могут протекать медленно, и наоборот, вещества с малым химическим сродством могут реагировать очень быстро. Так, согласно термодинамике, смесь газообразных водорода и кислорода при обычной температуре должна практически полностью превращаться в воду (для этой реакции DG o = –450 кДж), однако в эксперименте образование воды практически не наблюдается. Химический потенциал алмаза в обычных условиях больше химического потенциала графита и, следовательно, алмаз должен самопроизвольно превращаться в графит, в действительности же такое превращение не происходит.

Такое кажущееся противоречие между теоретическими предсказаниями и практическими результатами обусловлено тем, что в термодинамике учитывается только начальное и конечное состояния системы, но не рассматривается механизм перехода и не фигурирует такой практически важный фактор как время. Реально всякое превращение связано с преодолением некоторого энергетического барьера – разрыв связей в молекулах реагирующих веществ, перестройка структуры кристаллической решетки и т.д. Если энергетический барьер высок, то теоретически возможная реакция протекает настолько медленно, что за практически ограниченный промежуток времени каких-либо изменений не наблюдается (реакция “не идет”).

Таким образом, кроме термодинамического подхода, громадное значение приобретает и другой аспект исследования химических реакций – изучение их с точки зрения скоростей. Исследование закономерностей протекания процессов во времени и является предметом химической кинетики.

Можно выделить две главные задачи химической кинетики, определяющие ее практическое и теоретическое значение: 1) экспериментальное исследование скорости реакций и ее зависимость от условий протекания (концентрации реагирующих веществ, температуры, присутствия других веществ и т.д.) и 2) установление механизма реакции, т.е. числа элементарных стадий и состава образующихся промежуточных продуктов.

Строгое теоретическое рассмотрение кинетических параметров в настоящее время возможно лишь для простейших реакций в газовой фазе. Весьма ценные сведения о течении реакций дает эмпирический макроскопический подход. Количественное описание скорости реакции в зависимости от концентрации реагирующих веществ базируется на основном постулате химической кинетики и составляет предмет формальной кинетики.

20.2. Основные понятия и определения

Скоростью реакции называют количество молекул вещества, реагирующих в единицу времени. Сравнение скоростей различных реакций возможно лишь в случае, когда объемы реагирующих систем одинаковы, поэтому скорость v относят к единице объема:

где V – объем системы, dN – число молекул вещества, прореагировавших за время dt . Знак плюс относится к случаю, когда скорость определяется по образующемуся в реакции веществу, знак минус – когда скорость определяется по исходному веществу. Так как в химической реакции вещества реагируют в строго определенных соотношениях, то скорость можно рассчитать по любому веществу, участвующему в реакции.

Если объем системы остается неизменным, то можно вместо числа частиц использовать концентрацию (c = N /N A V , где N A – число Авогадро) и тогда скорость реакции равна изменению концентрации в единицу времени:

Так как в ходе реакции концентрации веществ изменяются, скорость является функцией времени. Можно ввести понятие средней скорости реакции в заданном интервале времени от t 1 до t 2:

, (20.3)

где N 1 и N 2 – число молекул вещества в моменты времени t 1 и t 2 .

При уменьшении временного интервала, когда (t 2 – t 1) ® 0, приходим к выражению (20.1, 20.2) для истинной скорости.

В общем случае скорость реакции зависит от многих факторов: природы реагирующих веществ, природы растворителя для реакций в растворах, концентрации, температуры, присутствия других веществ (катализаторов, ингибиторов) и т.п. Для данной реакции при постоянных условиях ее протекания скорость в каждый момент зависит от концентрации. Эта зависимость выражается основным постулатом химической кинетики :

В каждый момент времени скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, возведенных в некоторые степени.

Так, для некоторой реакции между веществами A, B, D,...

a A + b B + d D + ... ® продукты

скорость

... (20.4)

Показатели степеней n 1 , n 2 , n 3 ,… называются порядком реакциипо веществам A, B, D,… а их суммарное значение n = n 1 + n 2 + n 3 + ... называется общим порядком реакции .

Коэффициент пропорциональности k в кинетическом уравнении (20.3) называется константой скорости , или удельной скоростью реакции. Величина k численно равна скорости реакции, когда концентрации всех реагирующих веществ равны единице: c A = c B = c D = 1. Константы скорости различны для разных реакций и зависят от температуры.

Во многих случаях порядок не совпадает со стехиометрическими коэффициентами в уравнении реакции (т.е. n 1 ¹ a , n 2 ¹ b и т.д.).

Так, например, для двух подобных реакций с одинаковыми стехиометрическими уравнениями, получены совершенно различные кинетические уравнения:

для реакции H 2 + I 2 = 2HI

, (20.5)

а для реакции H 2 + Br 2 = 2HBr

. (20.6)

Это связано с различиями в механизмах протекания реакций. Большинство реакций протекает в несколько стадий, имеющих различные скорости, поэтому стехиометрическое уравнение представляет собой суммарный результат всех элементарных стадий, а общая скорость реакции определяется скоростью наиболее медленной стадии (лимитирующей реакции ).

В связи с этим для элементарных реакций вводится понятие молекулярность – число молекул, принимающих участие в элементарном акте химического взаимодействия. Если в элементарном акте участвует одна молекула (например, происходит распад молекулы), реакция является мономолекулярной. Если в элементарном акте взаимодействуют две молекулы, реакция называется бимолекулярной, например, приведенные выше реакции водорода с бромом или йодом. В тримолекулярных реакциях принимают участие три частицы, как например, в реакции рекомбинации атомов водорода в молекулу:

Н + Н + М = Н 2 + М,

где М – молекула водорода или любая другая частица.

В отличие от молекулярности порядок реакции может быть нулевым, целочисленным или дробным. Лишь для элементарных реакций численные значения молекулярности и кинетического порядка совпадают. Моно-, би- и тримолекулярные реакции являются в то же время реакциями первого, второго и третьего порядка, однако обратное заключение может оказаться ошибочным. Например, реакция разложения паров дихлорэтана

CH 2 Cl–CH 2 Cl CHCl=CH 2 + HCl

является реакцией первого порядка, ее скорость пропорциональна концентрации дихлорэтана:

.

Но эту реакцию нельзя назвать мономолекулярной, так как изучение ее механизма показало, что реакция протекает через несколько элементарных стадий, моно- и бимолекулярных. В таком случае вообще нельзя говорить о молекулярности реакции в целом, можно лишь указать на экспериментально установленный первый порядок.

В некоторых случаях концентрации одного или нескольких из реагирующих веществ в ходе реакции меняются очень мало и их можно считать постоянными. Тогда концентрации этих веществ можно включить в константу скорости уравнения (20.4) и кажущийся порядок реакции уменьшается, реакция становится псевдо n -ого порядка, где n – сумма показателей степеней при изменяющихся концентрациях.

Так, для реакции инверсии тростникового сахара, которая катализируется ионами водорода

С 12 Н 22 О 11 + Н 2 О 2С 6 Н 12 О 6 ,

кинетическое уравнение можно записать в виде:

,

т.е. это реакция третьего порядка. Но концентрация ионов водорода не меняется в ходе реакции, а концентрация воды, если она взята в большом избытке, также практически не изменяется. Таким образом, изменяется только концентрация сахара, и тогда кинетическое уравнение можно записать как

,

т.е. это реакция псевдопервого порядка.

20.3. Простые необратимые реакции

В системе одновременно и независимо могут протекать реакции с различной скоростью, но в противоположных направлениях. Через некоторое время после начала скорости прямой и обратной реакций становятся одинаковыми, и система достигает состояния равновесия. Такие реакции называются кинетически обратимыми . Это понятие следует отличать от обратимости процесса в термодинамическом смысле. Термодинамически обратимый процесс характеризуется тем, что в нем скорости прямого и обратного процессов различаются на бесконечно малую величину, а в любой момент времени состояние системы бесконечно мало отличается от равновесного. Таким образом, понятия кинетической и термодинамической обратимости совпадают лишь вблизи к состоянию химического равновесия, поэтому кинетически обратимые реакции более точно следовало бы называть двусторонними .

В принципе все химические реакции являются двусторонними, в действительности же некоторые из них в определенных условиях протекают лишь в одном направлении до практически полного исчезновения исходных веществ, т.е. равновесие в таких случаях очень сильно смещено в сторону образования продуктов. Такие реакции называются кинетически необратимыми , или односторонними .

20.3.1. Односторонние реакции первого порядка

К реакциям первого порядка относятся в основном реакции разложения, например, реакция разложения оксида азота

N 2 O 5 2NO 2 + O 2

или диэтилового эфира

CH 3 OCH 3 CH 4 + H 2 + CO

В общем случае запишем уравнение реакции первого порядка в виде

A ® продукты

t = 0) концентрация вещества А равнялась a , а через некоторое время она уменьшилась на x , то скорость реакции в любой момент времени, согласно уравнениям (20.3) и (20.4) равна

. (20.7)

Разделим переменные и проинтегрируем полученное уравнение, учитывая, что в начальный момент времени x = 0:

. (20.8)

В результате получим кинетическое уравнение реакции первого порядка:

Из последнего уравнения видно, что размерность константы скорости соответствует обратному времени (t –1) и в зависимости от величин скорости ее можно выражать в c –1 , мин –1 , ч –1 и т.д. Так как концентрации вещества входят в уравнение в виде отношения, то их можно выражать в любых единицах, а численные значения константы скорости от этого не зависят.

Потенцируя уравнение (20.9), получим значения концентраций реагирующего вещества в любой момент времени:

(20.11)

или для концентрации прореагировавшего вещества к моменту t

, (20.12)

откуда следует экспоненциальный характер изменения концентрации реагирующего вещества во времени (рис. 20.1).

Обратная величина константы скорости реакции первого порядка имеет физический смысл средней продолжительности жизни отдельной молекулы.

Рис.20.1. Зависимость концентраций прореагировавшего и оставшегося вещества от времени

Другой важной характеристикой реакции является время полуреакции(период полураспада) t 1/2 – время, в течение которого прореагирует половина исходного количества вещества. Подставляя в уравнение (20.8) значения t = t 1/2 и x = a /2, получаем:

. (20.13)

Как видно из уравнения, период полуреакции не зависит от исходного количества взятого вещества, а определяется только значением константы скорости реакции.

Из полученных уравнений следует также, что полностью вещество прореагирует только через бесконечно большой промежуток времени (x ® a при t ® ¥). Практически реакцию считают закончившейся, когда аналитически невозможно уже определить присутствие исходного вещества в системе или изменения во времени концентрации продуктов, т.е. практическое время реакции зависит от чувствительности используемых методов анализа.

20.3.2. Односторонние реакции второго порядка

В качестве примеров реакций второго порядка можно привести реакции образования йодоводорода в газовой фазе (или его разложения)

H 2 + I 2 ® 2HI,

омыления эфира щелочью

CH 3 COOC 2 H 5 + NaOH ® CH 3 COONa + C 2 H 5 OH,

разложения оксида азота (IV)

2NO 2 ® 2NO + O 2

По второму порядку протекают многочисленные элементарные бимолекулярные реакции с участием атомов и свободных радикалов, являющиеся промежуточными стадиями химических реакций.

Рассмотрим реакцию второго порядка, которая протекает по уравнению:

n 1 А + n 2 В ® продукты

Если в начальный момент времени (t = 0) концентрации веществ А и В равны соответственно a и b , и через некоторое время t концентрация А уменьшилась на x , то скорость реакции

. (20.14)

После разделения переменных получим:

. (20.15)

В наиболее простом случае, когда исходные концентрации веществ равны (a = b ) и n 1 = n 2 , уравнение (20.15) принимает вид

. (20.16)

Интегрируя его в пределах от x = 0 до x (левая часть) и от t = 0 до t (правая часть), получим кинетическое уравнение реакции второго порядка:

(20.17)

. (20.18)

Отсюда видно, что в размерность константы скорости входят величины, обратные времени и концентрации, т.е. численное значение константы зависит от выбора единиц времени и концентрации.

В рассматриваемом случае возможно также использование понятия времени полуреакции. Подставив в уравнение (20.17) t = t 1/2 и x = a /2, получим для времени полуреакции

Таким образом, для реакции второго порядка период полуреакции зависит не только от значения константы скорости, но и от начальной концентрации веществ.

Для решения уравнения (20.15) в общем случае, когда a ¹ b , n 1 ¹ n 2 , представим левую часть соотношения в виде суммы двух дробей с коэффициентами С 1 и С 2:

. (20.20)

Очевидно, что

. (20.21)

Это равенство справедливо при любых значениях x . Если поочередно подставить значения x = a и x = b в (20.21), то получим

и . (20.22)

Используя полученные отсюда значения С 1 и С 2 , проведем интегрирование уравнения (20.15):

. (20.23)

Отсюда константа скорости реакции второго порядка равна:

. (20.24)

В весьма распространенных случаях, когда n 1 = n 2 , получим

. (20.25)

20.3.3. Реакции третьего порядка

Примерами реакций третьего порядка могут служить протекающая в газовой фазе реакция окисления оксида азота (II)

2NO + O 2 ® 2NO

или реакция восстановления хлорида железа (III) в растворе

2FeCl 3 + SnCl 2 ® 2FeCl 2 + SnCl 4 .

К ним также относятся процессы рекомбинации атомов и простых радикалов с участием третьей частицы, уносящей избыток энергии:

Н + Н + М ® Н 2 + М

СН + СН + М ® С 2 Н 2 + М

Уравнение реакции третьего порядка можно записать в виде

А + В + С ® продукты

В простейшем случае, когда концентрации всех веществ одинаковы, т.е. c A = c B = c C = a , скорость реакции равна

, (20.26)

и после интегрирования получим:

. (20.27)

В общем случае, когда вещества имеют различные концентрации a , b , c , скорость реакции

. (20.28)

Интегрируя это уравнение тем же способом, что и в случае реакции второго порядка, получим кинетическое уравнение:

20.3.4. Реакции n-ого порядка

Для реакции произвольного n -ого порядка (кроме n = 1) при одинаковых концентрациях всех реагирующих веществ, равных a , скорость

, (20.30)

что после разделения переменных и интегрирования дает

. (20.31)

В таком виде формула не пригодна для описания кинетики реакций первого порядка, так при n = 1 возникает неопределенность; раскрытие неопределенности приводит к уравнению (20.10).

Подставляя в уравнение (20.30) t = t 1/2 и x = a /2, придем к выражению для периода полуреакции:

. (20.32)

20.4. Методы определения порядка реакции

При определении порядка реакции вначале находят порядок по каждому из реагирующих веществ. Для этого концентрации всех веществ, кроме рассматриваемого, берутся в большом избытке, так, что их можно считать постоянными и ввести в константу скорости. Используя какие-либо методы анализа, определяют концентрации исследуемого вещества через различные промежутки времени. Для того, чтобы концентрация вещества не изменилась во время взятия пробы и проведения анализа, реакцию затормаживают (“замораживают”) – охлаждают реакционную смесь, вводят специальные реактивы и т.п. Существует много различных способов определения порядка, наиболее распространенные из которых мы рассмотрим.

1. Метод графического подбора . Как следует из уравнения (20.10) для реакции первого порядка выполняется линейная зависимость в координатах логарифм концентрации – время. Для реакций второго порядка такая зависимость наблюдается в координатах 1/(a – x ) – t (уравнение (20.17)), а для реакций n -ого порядка прямая получается в координатах 1/(a x ) – время (уравнение (20.30)). Таким образом, используя полученные в эксперименте значения концентраций в различные моменты времени, строят графики в тех или координатах до получения линейной зависимости.

2. Метод аналитического подбора уравнения заключается в том, что проводится расчет константы скорости путем подстановки экспериментальных данных в различные кинетические уравнения. Если уравнение выбрано правильно, константа скорости должна оставаться постоянной в пределах ошибок опыта не зависимо от времени; систематический ход константы скорости свидетельствует о том, что уравнение выбрано неверно.

3. Определение порядка по периоду полуреакции . Логарифмируя уравнение (20.31) для периода полуреакции, получим:

. (20.33)

Это линейная зависимость в координатах lgt 1/2 – lga . Построив график в этих координатах (рис. 20.3) по тангенсу угла наклона прямой определяем порядок реакции. Отрезок, отсекаемый прямой на оси ординат равен , откуда можно рассчитать константу скорости реакции k .

4. Графический метод определения порядка . Скорость реакции n -ого порядка по данному веществу равна

v = kc n или

lgv = lgk + n lgc , (20.34)

где c – текущая концентрация реагирующего вещества.

Для определения порядка вначале строят график зависимости концентрация – время. Проводя касательные к кривой в точках, соответствующим различным моментам времени t 1 , t 2 , …, находят по тангенсу угла наклона касательных скорости реакции v 1 , v 2 , … в эти моменты времени (рис. 20.5a). Затем логарифмы скоростей откладывают как функции логарифмов соответствующих концентраций c 1 , c 2 ,.... Согласно уравнению (20.25) должна получиться прямая, тангенс угла наклона которой равен порядку реакции, а отсекаемый на оси ординат отрезок – логарифму константы скорости (рис. 20.5б).

Существуют также другие методы определения порядка реакций. Для надежного определения нахождения этой величины обычно необходимо использовать несколько методов.

20.5. Сложные реакции

К сложным реакциям относят процессы, в которых одновременно протекает несколько реакций (обратимые, параллельные, последовательные, сопряженные и т.п.)

Для описания кинетики сложных реакций используют принцип независимости , согласно которому при протекании в системе нескольких реакций каждая из них протекает независимо от других и подчиняется основному закону кинетики . Следует заметить, что этот принцип не является абсолютно строгим и не выполняется, например, для сопряженных реакций.

20.5.1. Обратимые реакции первого порядка

К обратимым (двусторонним) реакциям первого порядка относятся реакции изомеризации, например, изомеризация цианида аммония в мочевину в водном растворе

NH 4 CNO L (NH 2) 2 CO

или мутаротация глюкозы

a -глюкоза L b -глюкоза.

Уравнение таких реакций в общем виде можно представить в форме

где k 1 и k 2 – константы скоростей прямой и обратной реакций.

Так как рассматриваемая реакция протекает в противоположных направлениях, то ее общая скорость равна разности скоростей прямой и обратной реакций:

, (20.35)

где a и b – исходные количества веществ А и В, x – количество вещества А, прореагировавшего к моменту времени t .

Преобразуем уравнение (20.35) к виду:

К моменту установления равновесия прореагирует x ¥ молей вещества А, а скорость реакции в состоянии равновесия равна нулю. Из этих условий следует, что

, (20.37)

и уравнение (20.36) принимает вид:

. (20.38)

Разделяя переменные и интегрируя в пределах от 0 до t и от 0 до x , получим:

. (20.39)

По этой формуле можно определить лишь сумму констант скоростей k 1 и k 2 . Для раздельного нахождения этих констант воспользуемся условием равновесия:

. (20.40)

, (20.41)

где K c – константа равновесия.

Совместное решение уравнений (20.29) и (20.30) позволяет вычислить константы скоростей прямой и обратной реакций k 1 и k 2 .

В случае более сложных обратимых реакций (второго, третьего порядков) можно использовать такой же подход, однако сложность математической обработки, естественно, возрастает.

20.5.2. Параллельные реакции

В случае параллельных реакций одни и те же вещества реагируют одновременно по нескольким направлениям, образуя разные продукты. Например, при нитровании фенола одновременно образуются орто-, мета- и пара-нитрофенолы.

Рассмотрим простейший случай двух параллельных необратимых реакций первого порядка:

Используя принцип независимости, запишем выражение для скорости реакции превращения вещества А в В и С:

После его интегрирования получим

(20.43)

. (20.44)

Эти уравнения совпадают с уравнениями (20.10) и (20.11) для необратимой реакции первого порядка с той разницей, что вместо одной константы скорости k получаем сумму констант k 1 и k 2 . Чтобы найти отдельные значения k 1 и k 2 , запишем уравнения для скоростей образования веществ В и С (c B и c C – текущие концентрации этих веществ):

и . (20.45)

Подставим сюда значение (a x ) из уравнения (20.44). Тогда

. (20.46)

Интегрируя это уравнение в пределах от 0 до c B и от 0 до t , получим

. (20.47)

Аналогично для вещества С:

. (20.48)

Из последних двух уравнений следует, что

c B /c C = k 1 /k 2 , (20.49)

т.е. в любой момент реакции отношение концентраций продуктов является постоянной величиной, равной отношению констант скоростей параллельных реакций. Совместное решение уравнений (20.31) и (20.33) позволяет вычислить эти константы k 1 и k 2 .

20.5.3. Последовательные реакции

Как было сказано выше, большинство химических реакций имеет сложный механизм и они проходят через ряд последовательных стадий, а конечные продукты образуются из неустойчивых промежуточных продуктов – молекул, атомов, свободных радикалов. В связи с этим исследование таких последовательных (консекутивных) реакций представляет очень важную задачу химической кинетики.

Наиболее простым для рассмотрения является случай двух последовательных необратимых реакций первого порядка:

В начальный момент времени t = 0 концентрация вещества А равна a , вещества В и С отсутствуют. К некоторому моменту времени t концентрации веществ равны соответственно: c A = a x ; c B = x y ; c C = y.

Скорость превращения вещества А в В равна

, (20.50)

а скорость образования вещества С из В

. (20.51)

Решение первого уравнения было рассмотрено ранее (см. раздел 20.3.1):

. (20.52)

Подставляя это значение во второе уравнение, получим:

. (20.53)

Временно приравняем первый член правой части этого уравнения нулю:

Або . (20.54)

После интегрирования получаем

, (20.55)

где Z – условная константа интегрирования. Тогда

В действительности Z не является постоянной, а зависит от времени. Поэтому продифференцируем уравнение (20.56), считая Z функцией времени:

. (20.57)

Учитывая значение y из уравнения (20.55), видим, что

. (20.58)

Сравнивая последнее уравнение с уравнением (20.53), находим, что

. (20.59)

После интегрирования находим

. (20.60)

где I – постоянная интегрирования.

Полученное значение Z подставляем в уравнение (20.56):

. (20.61)

Постоянную интегрирования находим из условия, что в начальный момент времени при t = 0 концентрация вещества С y = 0:

и, окончательно, получаем зависимость концентрации конечного продукта от времени:

. (20.63)

Зависимость концентрации промежуточного продукта от времени найдем, используя величины x и y :

. (20.64)

Из уравнения (20.63) следует, что концентрация конечного продукта в пределе стремится к исходной концентрации вещества А (при t ®¥ y ® a ), т.е. исходное вещество полностью превращается в продукт С.

Концентрация промежуточного продукта проходит через максимум, так как согласно уравнению (20.64) при t = 0 (x y ) = 0 и при t ®¥ (x y )® 0, а в любой другой момент времени концентрация (x y ) >0.

Время достижения максимума t макс можно определить из условия экстремума:

. (20.65)

Продифференцируем уравнение (20.64):

. (20.66)

В соответствии с условием (20.65)

После логарифмирования и решения этого уравнения относительно t получим

(20.68)

т.е. время достижения максимума зависит не только от отношения констант скоростей k 2 и k 1 , но и от их абсолютных значений.

Схематически характер изменения концентраций веществ во времени представлен на рисунке 20.5.

Максимальная концентрация промежуточного продукта

. (20.69)

Если ввести обозначение k 2 /k 1 = q , то

. (20.70)

Отсюда следует, что максимальная концентрация промежуточного продукта зависит только от соотношения констант скоростей k 2 и k 1 .

Если промежуточный продукт сравнительно устойчив, т.е. k 1 >> k 2 , величина q очень мала (q << 1) и ею можно пренебречь по сравнению с единицей. В этих условиях

т.е. почти все исходное вещество накапливается в виде промежуточного продукта. Это вполне естественно, так как промежуточное вещество В превращается в конечное С с очень малой скоростью, и в пределе при k 2 ® 0 вторая реакция не идет.

Если промежуточный продукт очень неустойчив, k 2 >> k 1 , q >> 1, в уравнении (20.70) можно пренебречь единицей по сравнению с q , тогда

. (20.72)

Так как величина q велика, то концентрация промежуточного продукта очень мала.

Кривая y = f (t ), показывающая изменение концентрации конечного продукта С в ходе реакции, имеет S -образный характер. В начальный период скорость образования конечного продукта мала и его количество настолько незначительно, что аналитически не обнаруживается. Этот начальный период реакции называют индукционным . После индукционного периода концентрация конечного продукта вначале увеличивается медленно, затем все быстрее, но через некоторое время скорость образования вновь уменьшается, т.е. на кривой имеется точка перегиба. Для нахождения момента времени, соответствующего точке перегиба, приравняем вторую производную уравнения (20.62) нулю, откуда найдем эту точку:

, (20.73)

т.е. точка перегиба совпадает со временем достижения максимальной концентрации промежуточного продукта.

20.6. Метод стационарных концентраций

В рассмотренном выше простейшем случае двух последовательных реакций первого порядка получены уравнения для концентрации промежуточного и конечного продуктов, которые нельзя строго решить относительно констант скорости, т.е. невозможно рассчитывать последние непосредственно из экспериментальных данных о зависимости концентрации от времени. В более сложных случаях нескольких последовательных реакций разного порядка строгое математическое описание кинетики часто оказывается невозможным.

Для описания кинетики многостадийных реакций можно использовать приближенный метод стационарных концентраций Боденштейна. В основе метода лежит положение о том, что через некоторое небольшое время после начала реакции скорость образования промежуточного продукта становится примерно равной скорости его распада и суммарную скорость изменения концентрации неустойчивого промежуточного продукта можно считать приблизительно равной нулю в течение достаточно длительного времени , т.е. в течение этого времени устанавливается стационарная концентрация неустойчивого продукта .

Рассмотрим, например, некоторую реакцию

которая протекает с образованием двух промежуточных продуктов М 1 и М 2 по схеме:

1) А ® 2М 1 k 1

2) М 1 + В ® С + М 2 k 2

3) М 2 + А ® С + М 1 k 3

4) М 1 + М 1 ® А k 4

Обозначим через c oA и c oB исходные концентрации веществ А и В, через c i – текущие концентрации всех участников реакции. Используя предложенную схему реакции, запишем выражения для уменьшения концентраций А и В и увеличения концентрации С с течением времени:

, (20.74)

, (20.75)

. (20.76)

Скорости изменения концентрации промежуточных продуктов М 1 и М 2 соответственно равны:

. (20.78)

Считая, что концентрации промежуточных продуктов в течение реакции малы и учитывая стехиометрическое уравнение, можно записать:

, (20.79)

. (20.80)

Тогда, после дифференцирования по времени, получим:

, (20.81)

. (20.82)

Подставим в уравнение (20.81) значения скоростей (20.74) и (20.77):

Последнее выражение совпадает с уравнением (20.77) для скорости образования промежуточного продукта М 1 , откуда следует, что

Аналогично, подставив в уравнение (20.82) значения скоростей (20.74) и (20.75) и сравнивая с (20.77), получим

Уравнения (20.85) и (20.86) и являются выражениями принципа стационарности.

В заключение заметим, что метод стационарных концентраций не является совершенно строгим, его применение ограничивается выполнением условий типа (20.78), (20.79), т.е. образованием очень неустойчивых промежуточных продуктов, концентрация которых в ходе реакции оказывается небольшой. Однако на практике такие случаи встречаются очень часто (образование в качестве промежуточных продуктов атомов, свободных радикалов), поэтому метод стационарных концентраций получил широкое распространение при изучении кинетики и механизма различных реакций.

20.7. Влияние температуры на скорость химических реакций

В большинстве случаев повышение температуры приводит к увеличению константы скорости химической реакции. Согласно правилу Вант-Гоффа температурный коэффициент скорости g, т.е. отношение констант скоростей реакции при температурах T и T + 10, изменяется в пределах от 2 до 4:

. (20.87)

В общем случае изменения температуры от T до T + 10n , где n – положительное или отрицательное, целое или дробное число, для температурного коэффициента можно записать:

Правило Вант-Гоффа получено эмпирически и является приближенным. Значения температурного коэффициента не остаются постоянными при изменении температуры и стремятся к единице при высоких температурах. Поэтому правило можно использовать для полуколичественных оценок в области сравнительно низких температур.

Более точно зависимость константы скорости от температуры передается уравнением Аррениуса:

, (20.89)

где В и С – постоянные, характерные для данной реакции и не зависящие от температуры.

Уравнение Аррениуса также было получено вначале эмпирически, а затем обосновано теоретически.

При выводе уравнения Аррениус предположил, что реагировать могут не все молекулы, а лишь некоторые из них, находящиеся в особом активном состоянии. Эти молекулы образуются из обычных в эндотермическом процессе с поглощением тепла E A . Так, например, в реакции

активные молекулы А* образуются из нормальных молекул А по схеме:

A L A* + E A

По Аррениусу, этот процесс является обратимым и быстрым, так что в системе всегда сохраняется термодинамическое равновесие между А и А*, которое можно характеризовать константой равновесия K c :

Или = K c [A]. (20.90)

Предполагается, что концентрация активной формы мала, и равновесная концентрация [А] исходных молекул А практически равна текущей концентрации c A » [А]. Изменение константы равновесия с температурой описывается уравнением изохоры Вант-Гоффа

. (20.91)

Последнее допущение Аррениуса заключается в том, что превращение активных молекул в конечный продукт осуществляется со скоростью, не зависящей от температуры и относительно медленно:

Таким образом, скорость образования вещества В равна

где k’ – константа скорости, не зависящая от температуры.

С другой стороны, согласно основному постулату химической кинетики скорость реакции А ® В равна

где k – определяемая экспериментально константа скорости, которая зависит от температуры.

Сравнивая уравнения (20.92) и (20.93) и учитывая все ранее сделанные допущения, получим:

Отсюда следует, что экспериментальная константа скорости

k = k"c або lnk = lnk" + lnK c . (20.95)

Так как k’ не зависит от температуры, то дифференцируя по T , получим

. (20.96)

Используя уравнение Вант-Гоффа (20.91), приходим к уравнению Аррениуса в дифференциальной форме:

Величина E A называется энергией активации , или опытной энергией активации. В рамках изложенных представлений – это то количество теплоты, которое необходимо, чтобы перевести один моль молекул, находящихся в нормальном состоянии, в особую активную, реакционно-способную форму.

Интегрируя уравнение (20.96) в предположении независимости энергии активации от температуры, получим:

, (20.98)

где С – константа интегрирования.

Полученное уравнение совпадает с эмпирическим уравнением Аррениуса (20.89), в котором постоянная В соответствует значению E A /R или E A = ВR . Потенцируя уравнение (20.98), можно представить его в экспоненциальной форме, полагая e C = A:

. (20.99)

Как видно из уравнения (20.97), логарифм константы скорости является линейной функцией обратной температуры. Поэтому для экспериментального определения E A находят константы скорости реакции при нескольких температурах и строят зависимость в координатах lnk – 1/T (рис. 20.6). Отрезок, отсекаемый прямой на оси ординат, равен константе С , а энергия активации вычисляется по тангенсу угла наклона прямой.

Если известны константы скорости реакции только при двух температурах T 1 и T 2 , энергию активации можно вычислить из соотношения, которое получается интегрированием уравнения (20.97) в пределах этих температур:

, (20.100)

где k 1 и k 2 – константы скорости при температурах T 1 и T 2 соответственно.

В некоторых случаях график зависимости lnk – 1/T имеет иной вид – он состоит как бы из двух пересекающихся прямых с разным наклоном, что свидетельствует о сложном характере реакции. Например, водород может реагировать как с жидкой, так и с газообразной серой. Если в сосуде одновременно присутствуют водород, жидкая сера и ее пары, то при низких температурах протекает реакция водорода с жидкой серой с меньшей энергией активации (отрезок 1 на рис. 20.7), а при более высоких температурах – реакция водорода с парами серы с большей энергией активации (отрезок 2).

Экспериментальные исследования показывают, что энергии активации реакций с валентнонасыщенными молекулами составляют от нескольких десятков до сотен (50 ¸ 500) кДж/моль. При этом не обнаружено каких-либо простых закономерностей, связывающих энергию активации с какими-нибудь другими характеристиками реакции, например, с тепловым эффектом. В реакциях, протекающих через элементарные стадии с участием свободных атомов и радикалов, энергии активации значительно ниже (10 ¸ 50 кДж/моль).

В некоторых случаях повышение температуры приводит к снижению скорости реакции. Примером может служить реакция

2NO + O 2 ® 2NO 2 ,

которая является одной из стадий получения азотной кислоты. Аномальный ход температурной зависимости константы скорости этой реакции можно объяснить, предположив, что она протекает в две стадии:

I. 2NO L N 2 O 2 (быстрая, обратимая, экзотермическая)

II. N 2 O 2 + O 2 ® 2NO 2 (медленная)

Общая скорость реакции определяется скоростью второй, более медленной стадии:

.

Концентрация димера N 2 O 2 зависит от константы равновесия, устанавливающегося на первой стадии:

Или .

.

Это уравнение соответствует экспериментально установленному третьему порядку реакции. Так как первая стадия экзотермична, то константа равновесия K c уменьшается при повышении температуры. Если это уменьшение перекрывает возможное увеличение k , то это и приведет к общему снижению скорости реакции.

20.8 Гетерогенные химические реакции

Химическое взаимодействие в гетерогенных системах осуществляется на поверхности раздела фаз: твердое тело – газ, твердое тело – жидкость (раствор) или жидкость – жидкость в случае несмешивающихся жидкостей. Скорость гетерогенного процесса определяется как количество вещества, реагирующего в единицу времени на единице площади поверхности:

где S – площадь поверхности, на которой проходит реакция. Нахождение истинного значения площади поверхности представляет сложную задачу вследствие шероховатости поверхности, наличия пор, капилляров.

В гетерогенном процессе можно выделить три основных этапа: подвод реагирующего вещества к поверхности раздела, взаимодействие на поверхности (которое может состоять из нескольких стадий), отвод продуктов реакции в объем фазы. Скорость всего процесса в целом определяется скоростью наиболее медленной стадии, которой может быть любой из названных этапов.

Подвод реагентов к поверхности и отвод продуктов осуществляется при молекулярной или конвективной диффузии. Диффузия описывается законом Фика:

, (20.102)

где dm – количество вещества, продиффундировавшего за время dt через поверхность S , dc /dx – градиент концентрации.

Если концентрация вещества на границе раздела фаз равна c s , а на некотором расстоянии d – c x , то градиент концентрации

И . (20.103)

Разделив последнее уравнение на объем V и переходя к концентрациям, получим:

. (20.104)

Скорость диффузии равна

. (20.105)

Полученное уравнение соответствует кинетическому уравнению реакции первого порядка. Таким образом, если лимитирующей стадией является диффузия, то кинетика реакции будет описываться уравнением (20.70), хотя оно и не отражает истинной скорости и порядка химической реакции на поверхности. В таком случае говорят, что процесс идет в диффузионной области .

Если скорость химической реакции значительно меньше, чем скорость диффузии, процесс протекает в кинетической области и описывается уравнением той реакции, которая идет на поверхности.

При сравнимых скоростях диффузии и реакции процесс идет в переходной области. Константу скорости в зависимости от температуры можно выразить уравнением:

, (20.106)

Рис. 20.8. Температурная зависимость константы скорости гетерогенной химической реакции

где E A – энергия активации химической реакции, E D – энергия активации диффузии.

Величина E D небольшая (5 ¸ 10 кДж/моль), т.е. E D << E A , поэтому экспериментально определяемая энергия активации примерно в два раза меньше истинной энергии активации химической реакции.

Так как энергия активации диффузии невелика, то при изменении температуры на 10° скорость диффузии изменяется в 1,1 – 1,2 раза, в то время как скорость химической реакции меняется в 2 – 4 раза. Поэтому при определениях скорости реакции в широком диапазоне температур наблюдается сложный характер зависимости lnk от 1/T (рис. 20.8).

При низких температурах реакция идет обычно в кинетической области (участок CD ) и скорость сильно зависит от температуры. При высоких температурах скорость диффузии обычно значительно меньше скорости химической реакции, процесс идет в диффузионной области с мало изменяющейся скоростью (участок AB ). Участок BC соответствует переходной области.

Значительную роль в кинетике гетерогенных реакций может играть скорость отвода продуктов реакции. Если, например, в реакции образуются труднорастворимые вещества, то, осаждаясь на поверхности, они блокируют ее, и реакция практически прекращается.

Скорость химической реакции

Скорость химической реакции определяется как изменение молярной концентрации одного из реагирующих веществ за единицу времени. Скорость химической реакции - величина всегда положительная, поэтому если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение домножается на -1.
Например для реакции скорость можно выразить так:

В 1865 году Н.Н. Бекетовым и в 1867 году К.М. Гульдбергом и П. Вааге был сформулирован закон действующих масс , согласно которому скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведённым в некоторые степени . Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы: природа реагирующих веществ, наличие катализатора, температура (правило Вант-Гоффа) и площадь поверхности реагирующих веществ.

Порядок химической реакции

ПОРЯДОК РЕАКЦИИ по данному веществу - показатель степени при концентрации этого вещества в кинетическом уравнении реакции.

Переходное состояние

Катализ

Катализ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами.
Катализаторы - вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.
Каталитические реакции - реакции, протекающие в присутствии катализаторов.

Положительным называют катализ, при котором скорость реакции возрастает, отрицательным (ингибированием) - при котором она убывает. Примером положительного катализа может служить процесс окисления аммиака на платине при получении азотной кислоты. Примером отрицательного - снижение скорости коррозии при введении в жидкость, в которой эксплуатируется металл, нитрита натрия, хромата и дихромата калия.
Катализаторы, замедляющие химическую реакцию, называются ингибиторами.
В зависимости от того, находится катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе.
Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:
Н О + I = H O + IO
Н O + IO = Н O + O + I
При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.
При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела - катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель. Механизм гетерогенного катализа сложнее, чем у гомогенного.
Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.
1. Диффузия реагирующих веществ к поверхности твердого вещества.
2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их.
3. Химическая реакция между реагирующими молекулами.
4. Десорбция продуктов с поверхности катализатора.
5. Диффузия продукта с поверхности катализатора в общий поток.
Примером гетерогенного катализа является окисление SO в SO на катализаторе V O при производстве серной кислоты (контактный метод).
Промоторы (или активаторы) - вещества, повышающие активность катализатора. При этом промоторы могут сами и не обладать каталитическими свойствами.
Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы мышьяка, фосфора вызывают быструю потерю катализатором V O активности (контактный метод производства H SO).
Многие важнейшие химические производства, такие, как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов.
Биохимические реакции в растительных и животных организмах ускоряются биохимическими катализаторами - ферментами.
Скорость процесса - чрезвычайно важный фактор, определяющий производительность оборудования химических производств. Поэтому одна из основных задач, поставленных перед химией научно-технической революцией, это поиск путей увеличения скорости реакций. Другая важ- ная задача современной химии, обусловленная резко возрастающими масштабами производства химических продуктов,- повышение избирательности химических превращений в полезные продукты, уменьшение количества выбросов и отходов. С этим связана, кроме того, и охрана окружающей среды и более рациональное использование истощающихся, к сожалению, природных ресурсов.
Для достижения всех этих целей нужны верные средства, и такими средствами служат прежде всего катализаторы. Однако изыскивать их не так просто. B процессе познания внутреннего устройства окружающих нас вещей ученые установили определенную градацию, иерархию уровней микромира. Мир, описываемый в нашей книге,- это мир молекул, взаимные превращения которых составляют предмет химии. Нас будет интересовать не вся химия, а только часть ее, посвященная изучению динамики изменения химической структуры молекул. Видимо нет надобности говорить о том, что молекулы построены из атомов, а последние- из ядра и окружающей его электронной оболочки; что свойства молекул зависят от природы составляющих их атомов и последовательности соединения их друг с другому что химические и физические свойства веществ зависят от свойств молекул и характера их взаимосвязи. Будем считать, что все это в общих чертах известно читателю, и потому главный упор сделаем на вопросах, связанных с представлением о скорости химических реакций.
Взаимные превращения молекул протекают с самой различной скоростью. Скорость можно изменять, нагревая или охлаждая смесь реагирующих молекул. При нагревании скорость реакции, как правило, возрастает, но это не единственное средство ускорения химических превращений. Существует еще один, более эффективный способ - каталитический, широко используемый в наше время в производстве самых разнообразных продуктов.
Первые научные представления о катализе возникли одновременно с развитием атомной теории строения вещества. В 1806 г., через год после того, как один из создателей современной атомистической теории Дальтон сформулировал в «Записках Манчестерского литературного и философского общества» закон кратных отношений, Клеман и Дезорм опубликовали подробные данные об ускорении процесса окисления сернистого газа в присутствии окислов азота при камерном производстве серной кислоты. Шесть лет спустя в «Технологическом журнале» Кирхгоф изложил результаты своих наблюдений об ускоряющем действии разбавленных минеральных кислот на гидролиз крахмала до глюкозы. Этими двумя наблюдениями была открыта эпоха экспериментального изуче- ния необычных для того времени химических явлений, которым шведский химик Берцелиус дал в 1835 г. общее название «катализ» от греческого слова «каталоо» - разрушать. Такова, в двух словах, история открытия ка- тализа, который с полным основанием следует отнести к одному из фундаментальных явлений природы.
Теперь нам следует дать современное и наиболее общепринятое определение катализа, а затем и некоторую общую классификацию каталитических процессов, так как именно с этого начинается любая точная наука. Как известно, «физика - это то, чем занимаются физики (то же самое можно сказать и о химии)». Следуя этому наставлению Бергмана, можно было бы ограничиться утверждением, что «катализ - это то, чем занимаются и химики и физики». Но, естественно, такого шутливого объяснения недостаточно, и со времен Берцелиуса давалось множество научных определений понятию «катализ». На наш взгляд наилучшее определение сформулировано Г. К. Вересковым: «Феноменологически катализ можно определить как возбуждение химических реакций или изменение их скорости под действием веществ - катализаторов, многократно вступающих в промежуточные химические взаимодействия с участниками реакции и восстанавливающих после каждого цикла промежуточных взаимодействий свой химический состав».
Самое странное в этом определении его заключительная часть - вещество, ускоряющее химический процесс, не расходуется. Если нужно ускорить движение тяжелого тела, его подталкивают и, следовательно, затрачивают на это энергию. Чем больше потрачено энергии, тем большую скорость приобретает тело. В идеальном случае количество затраченной энергии будет точно равно приобретенной телом кинетической энергии. В этом проявляется фундаментальный закон природы - сохранение энергии.

Видные деятели химии о катализе

И. Берцелиус (1837): «Известные вещества оказывают при соприкосновении с другими веществами такое влияние на последние, что возникает химическое действие,- одни вещества разрушаются, другие образуются вновь без того, чтобы тело, присутствие которого вызывает эти превращения, принимало в них какое-либо участие. Мы называем причину, вызывающую эти явления, каталитической силой».

М. Фарадей (1840). «Каталитические явления можно объяснить известными свойствами материи, не снабжая ее при этом никакой новой силой».

П. Рашиг (1906): «Катализ представляет вызываемое внешними причинами изменение строения молекулы, имеющее следствием изменение химических свойств».

Э. Абель (1913): «Я пришел к выводу, что катализ осуществляется в результате реакции, а не простого присутствия вещества».

Л. Гурвич (1916): «Каталитически действующие тела, притягивая к себе движущиеся молекулы гораздо сильнее, чем тела, лишенные каталитического действия, тем самым увеличивают силу удара, попадающих на их поверхность молекул».

Г. К. Боресков (1968): «Когда-то катализ рассматривался как особое, немного таинственное явление, со специфическими законами, раскрытие которых должно было сразу в общей форме решить задачу подбора. Сейчас мы знаем, что это не так. Катализ по своей сущности - химическое явление. Изменение скорости реакции при каталитическом воздействии обусловлено промежуточным химическим взаимодействием реагирующих веществ с катализатором».

Если не принимать во внимание неудачную попытку Берцелиуса связать наблюдаемые явления с действием скрытой «каталитической силы», то, как можно заметить из приведенных выступлений, дискуссия шла в основном вокруг физических и химических аспектов катализа. Длительное время особенно популярной была энергетическая теория катализа, связывающая процесс возбуждения молекул с резонансной миграцией энергии. Катализатор вступает во взаимодействие с реагирующими молекулами, образуя неустойчивые промежуточные соединения, которые распадаются с выделением продукта реакции и химически неизменного катализатора. Современные наши знания лучше всего отражены в высказывании Борескова. Здесь, однако, возникает вопрос, а не может ли катализатор, поскольку он сам химически участвует в реакции, создать новое равновесное состояние? Если бы это было так, то идея о химическом участии катализатора немедленно вступала бы в противоречие с законом сохранения энергии. Чтобы избежать этого, ученые были вынуждены принять, а затем и экспериментально доказать, что катализатор ускоряет реакцию не только в прямом, но и в обратном направлениях. Те же соединения, которые изменяют и скорость и равновесие реакции, в строгом смысле этого слова не являются катализаторами. Нам остается добавить, что обычно в присутствии катализатора имеет место ускорение химических реакций, и это явление называют «положительным» катализом в отличие от «отрицательного», при котором введение катализатора в реакционную систему вызывает снижение скорости. Строго говоря, катализ всегда повышает скорость реакции, но иногда ускорение одной из стадий (например, появление нового пути обрыва цепей) приводит к наблюдаемому торможению химической реакции.

Мы будем рассматривать только положительный катализ, который принято подразделять на следующие типы:

а) гомогенный, когда реакционная смесь и катализатор находятся или в жидком или в газообразном состоянии; б) гетерогенный - катализатор находится в виде твердого вещества, а реагирующие соединения в виде раствора или газообразной смеси; (Это наиболее распространенный тип катализа, осуществляемого, таким образом, на границе раздела двух фаз.) в) ферментативный - катализатором служат сложные белковые образования, ускоряющие течение биологически важных реакций в организмах растительного и животного мира. (Ферментативный катализ может быть как гомогенным, так и гетерогенным, но из-за специфических особенностей действия ферментов целесообразно выделение этого вида катализа в самостоятельную область.) Гомогенный катализ

Среди многочисленных каталитических реакций особое место занимает катализ в цепных реакциях. «Цепными реакциями, как известно, называются такие химические и физические процессы, в которых образование в веществе или в смеси веществ некоторых активных частиц (активных центров) приводит к тому, что каждая из активных частиц вызывает целый ряд (цепь) последовательных превращений вещества» (Эмануэль, 1957).

Такой механизм развития процесса возможен благодаря тому, что активная частица взаимодействует с веществом, образуя не только продукты реакции, но и новую активную частицу (одну, две или более), способную к новой реакции превращения вещества, и т. д. Возникающая при этом цепь превращений вещества продолжается до тех пор, пока активная частица не исчезает из системы (происходит «гибель» активной частицы и обрыв цепи). Наиболее трудная стадия при этом - зарождение активных частиц (например, свободных радикалов), после же зарождения цепь превращений осуществляется легко. Цепные реакции широко распространены в природе. Полимеризация, хлорирование, окисление и многие другие химические процессы идут по цепному, а точнее - по радикально-цепному (с участием радикалов) механизму. Механизм окисления органических соединений (на ранних стадрях) в настоящее время установлен достаточно тщательно. Если обозначить окисляющееся вещество R-H (где Н - атом водорода, имеющий наименьшую прочность связи с остальной молекулой R), то этот механизм можно записать в следующем виде:

Катализаторы, например соединения металлов переменной валентности, могут оказывать влияние на любую из рассмотренных стадий процесса. Остановимся теперь на роли катализаторов в процессах вырожденного разветвления цепей. Взаимодействие гидроперекиси с металлом может приводить как к ускорению так и к торможению реакции окисления органических веществ соединениями металлов переменной валентности в зависимости от характера продуктов, образующихся при распаде гидроперекиси. Соединения металлов образуют с гидроперекисями комплекс, который распадается в «клетке» растворителя среды, если обра-зующиеся при распаде комплекса радикалы успеют выйти из клетки, то они инициируют процесс (положительный катализ). Если же эти радикалы не успеют выйти и рекомбинируют в клетке в молекулярные неактивные продукты, то это приведет к замедлению радикально-цепного процесса (отрицательный катализ), поскольку в этом случае гидроперекись - потенциальный поставщик новых радикалов- расходуется вхолостую.

До сих пор мы рассматривали лишь неглубокие стадии процессов окисления; на более глубоких стадиях например в случае окисления углеводородов, образуются кислоты, спирты, кетоны, альдегиды, которые также могут реагировать с катализатором и служить дополнительным источником свободных радикалов в реакции, т. е. в этом случае будет налицо дополнительное вырожденное разветвление цепей.

Гетерогенный катализ

К сожалению, до сих пор, несмотря на достаточно большое число теорий и гипотез в области катализа, многие основополагающие открытия были сделаны случайно или в результате простого эмпирического подхода. Как известно, случайно был найден ртутный катализатор сульфирования ароматических углеводородов М. А. Ильинским, который нечаянно разбил ртутный термометр: ртуть попала в реактор, и реакция пошла. Аналогичным образом были обнаружены теперь всем хорошо известные, а в свое время открывшие новую эру в процессе полимеризации катализаторы стереоспецифической полимеризации Циглера. Естественно, что такой путь развития учения о катализе не соответствует современному уровню науки, и именно этим объясняется повышенный интерес к изучению элементарных стадий процессов в гетерогенно-каталитических реакциях. Эти исследования - прелюдия для создания строго научных основ подбора высокоэффективных катализаторов. Во многих случаях роль гетерогенных катализаторов в процессе окисления сводится к адсорбции органического соединения и кислорода с образованием на поверхности катализатора адсорбированного комплекса этих веществ. Такой комплекс разрыхляет связи компонентов и делает их более реакционноспособными. В некоторых случаях катализатор адсорбирует лишь один компонент, который диссоциирует на радикалы. Например, пропилен на закиси меди диссоциирует с образованием аллильного радикала, легко вступающего затем в реакцию с кислородом. Выяснилось, что каталитическая активность металлов переменной валентности в значительной мере зависит от заполнения d-орбиталей в катионах окислов металлов.

По каталитической активности в реакции разложения многих гидроперекисей соединения металлов располагаются следующим ря-

Мы рассмотрели один из возмжных путей инициирования процесса - взаимодействие гидроперекиси с катализатором. Однако в случае окисления реакция гетерогенного инциирования цепей может протекать как путем распада на радикалы гидроперекиси, так и путем взаимодействия углеводорода с кислородом, активированным поверхностью катализатора. Инициирование цепей может быть обусловлено участием заряженной формы органического соединения RH+, образующегося при взаимодействии RH с катализатором. Так обстоит дело с катализом в реакциях инициирования (зарождения и разветвления) цепей. Роль гетерогенных катализаторов в реакциях продолжения цепи особенно четко подчеркивается изменением скорости и направления изомеризации перекисных радикалов.

Катализ в биохимии

Ферментативный катализ неразрывно связан с жизнедеятельностью организмов растительного и животного мира. Многие жизненно важные химические реакции, протекающие в клетке (что-то около десяти тысяч), управляются особыми органическими катализаторами, именуемыми ферментами или энзимами. Термину «особый» не следует уделять пристального внимания, так как уже известно, из чего построены эти ферменты. Природа избрала для этого один единственный строительный материал - аминокислоты и соединила их в полипептидные цепи различной длины и в разной последовательности

Это так называемая первичная структура фермента, где R - боковые остатки, или важнейшие функциональные группы белков, возможно, выступающие в качестве активных центров ферментов. На эти боковые группы и ложится основная нагрузка при работе фермента, пептидная же цепь играет роль опорного скелета. Согласно структурной модели Полинга - Кори, она свернута в спираль, которая в обычном состоянии стабилизирована водродными связями между кислотными и основными центрами:

Для некоторых ферментов установлены полный аминокислотный состав и последовательность расположения их в цепи, а также сложная пространственная структура. Но это все же очень часто не может помочь нам ответить на два главных вопроса: 1) почему ферменты так избирательны и ускоряют химические превращения молекул только вполне определеyyой структуры (которая нам тоже известна); 2) каким образом фермент снижает энергетический барьер, т. е. выбирает энергетически более выгодный путь, благодаря чему реакции могут протекать при обычной температуре.

Строгая избирательность и высокая скорость - два основных признака ферментативного катализа, отличающие его от лабораторного и производственного катализа. Ни один из созданных руками человека катализаторов (за исключением, пожалуй, 2-оксипиридина) не может сравниться с ферментами по силе и избирательности воздействия на органические молекулы. Активность фермента, как и любого другого катализатора, тоже зависит от температуры: с повышением температуры возрастает и скорость ферментативной реакции. При этом обращает на себя внимание резкое снижение энергии активации Е по сравнению к некаталитической реакцией. Правда, это происходит не всегда. Известно много случаев, когда скорость возрастает благодаря увеличению независящего от температуры предэкспоненциального множителя в уравнении Аррениуса.

Равновесие

Константа химического равновесия

Свободная энергия

Ссылки

Химическая кинетика и катализ Лекции А. А. Кубасова, к. хим. н, доцента кафедры физической химии Химического факультета МГУ.

См. также

  • Теория столкновений
  • Теория переходного состояния

Wikimedia Foundation . 2010 .

Смотреть что такое "Кинетика химическая" в других словарях:

    Раздел физической химии, учение о скоростях и механизмах химических реакций. Кинетика химическая научная основа создания новых и совершенствования существующих процессов химической технологии. Методы кинетики химической используются в биологии и… … Большой Энциклопедический словарь

    Область физ. химии, в к рой изучают механизмы и скорости хим. реакций. К. х. включает три осн. задачи: изучение закономерностей протекания хим. реакций во времени и зависимость их скоростей от концентраций реагентов, темп ры и др. факторов;… … Физическая энциклопедия

    КИНЕТИКА ХИМИЧЕСКАЯ - (от греч. kinesis движение), отдел теоретической химии, посвященный изучению законов хим. реакций. Можно наметить несколько типов хим. взаимодействий и прежде всего отличать реакции, протекающие в гомогенной (однородной) среде, от реакций,… … Большая медицинская энциклопедия

    Кинетика химическая - – раздел физической химии, изучающей скорость и механизмы химических реакций, закономерности изменения во времени концентраций исходных, промежуточных компонентов и конечных продуктов реакций, описываемых кинетическими кривыми. [Ушеров… … Энциклопедия терминов, определений и пояснений строительных материалов

    Раздел физической химии; учение о скоростях и механизмах химических реакций. Химическая кинетика научная основа создания новых и совершенствования существующих процессов химической технологии. Методы химической кинетики используются в биологии и … Энциклопедический словарь

    Кинетика химических реакций, учение о химических процессах о законах их протекания во времени, скоростях и механизмах. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической… … Большая советская энциклопедия

    - (от греч. kinetikos движущий), раздел физ. химии, изучающий хим. р цию как процесс, протекающий во времени, механизм этого процесса, его зависимость от условий осуществления. К. х. устанавливает временные закономерности протекания хим. р ций,… … Химическая энциклопедия

    Учение о скоростях и механизмах (совокупности и последовательности стадий) хим. реакции; раздел физической химии. Скорость хим. реакций в замкнутых системах определяется по изменению концентрации исходных, промежуточных или конечных в в (молекул … Большой энциклопедический политехнический словарь

КИНЕТИКА.

Кинетика – это наука о скоростях процессов.

Химическая кинетика рассматривает скорости и механизм химических реакций. Важнейший параметр кинетики – время протекания процесса.

Скорости реакций зависят от многих факторов: природы реагирующих веществ, концентрации, температуры, давления, присутствия катализаторов, а в случае фазовых превращений – также от ряда других условий (состояния поверхности раздела фаз, условий тепло- и массообмена и др.). Задача кинетики состоит в выяснении роли этих факторов и в установлении механизма реакций и фазовых превращений.

Химическая кинетика включает в себя два раздела:

1) формально-математическое описание скорости реакции без учета действительного механизма самой реакции (формальная кинетика);

2) учение о механизме химического взаимодействия.

ФОРМАЛЬНАЯ КИНЕТИКА.

В формальной кинетике скорость химической реакции представляется в зависимости только от концентрации реагирующих веществ.

Закономерности формальной кинетики позволяют:

1) определить кинетические параметры химической реакции (константу скорости, период полупревращения и др.);

2) распространить полученные закономерности на сложные многостадийные химические реакции, характерные для технологических процессов;

3) классифицировать химические реакции.

Вещества, вступающие в процесс химического превращения, называются исходными веществами .

Вещества, образующиеся в процессе химического превращения и не претерпевающие в ходе этого процесса дальнейших химических изменений, называются продуктами реакции .

Вещества, образующиеся в одних стадиях процесса химического превращения и расходующиеся в других стадиях этого же процесса, называются промежуточными веществами .

Реакции образования и расходования промежуточных веществ называются промежуточными реакциями .

Химическая реакция, протекающая в одной фазе, называется гомогенной химической реакцией (реакция в растворе).

Химическая реакция, протекающая на границе раздела фаз, называется гетерогенной химической реакцией (реакция на поверхности катализатора). Следует отметить, что в гетерогенном процессе оба реагирующих вещества могут находиться в одной фазе. Так, гидрирование этилена

С 2 Н 4 + Н 2 → С 2 Н 6

идет на поверхности катализатора, например, никеля. Однако оба реагирующих вещества находятся в одной фазе (в газовой фазе над поверхностью катализатора).

Сложные химические реакции, в которых одни стадии являются гомогенными, другие – гетерогенными, называют гомогенно-гетерогенными .

Гомофазным называется процесс, в котором все компоненты: исходные, промежуточные и конечные вещества – находятся в пределе одной фазы. (Например, реакция нейтрализации кислоты щелочью в растворе являетсягомогенным гомофазным процессом ).

Гетерофазным называется процесс, в котором компоненты образуют более чем одну фазу (например, гидрирование этилена на никелевом катализаторе является гетерогенным гомофазным процессом – процесс идет на границе фаз металла и газа, а исходные вещества и продукт реакции находятся в одной газовой фазе).

Основной величиной в химической кинетике является скорость реакции .

Скорость химической реакции – это изменение концентрации вещества в единицу времени в единице объема. В общем случае скорость реакции меняется с течением времени и поэтому её лучше определять как производную от концентрации реагирующего вещества по времени (при постоянном объеме системы):

где
– скорость, выраженная убылью концентрации с реагирующего вещества;– время. Так как с течением времени концентрация реагирующих веществ уменьшается, поэтому перед производной ставят знак «минус» («–»), (скорость – величина положительная).

При взаимодействии двух или более веществ скорость реакции можно выразить через производную от концентрации любого вещества.

аА + bВ → сС +dD

Равенство имеет место при соблюдении стехиометрического соотношения между участниками реакции.

Изменение концентрации от времени выражается кинетической кривой (
).

Зная кинетическую кривую для какого-либо компонента, можно легко определить скорость его накопления или расходования графическим дифференцированием кинетической кривой.

Тангенс угла наклона касательной к кинетической кривой есть графическая интерпретация скорости химической реакции.

Крутизна кинетической кривой характеризует истинную скорость химической реакции в определенный момент времени. Кроме того, по кинетическим кривым можно определить порядок и константу скорости реакции.

В общем случае химическая кинетика изучает оптимальные условия ведения процесса только для термодинамически разрешенных реакций.

Химическая кинетика имеет 2 постулата :

I . О независимости протекания реакции.

Если процесс протекает через ряд стадий, то предполагается, что скорость каждой отдельной стадии не зависит от скорости остальных стадий.

II . Скорость химической реакции прямо пропорциональна концентрации исходных веществ (ЗДМ).

аА + bВ → сС +dD

Данная запись выражения скорости реакции называется кинетическим уравнением .


Скорость химической реакции зависит от концентрации исходных веществ, от температуры, времени, катализатора и природы веществ.

k – константа скорости. Она численно равна скорости реакции при концентрации веществ, равных единице.

Константа скорости k не зависит от концентрации реагентов и времени (
). Она зависит от температуры, наличия катализатора и природы веществ (
катализатор, природа вещества).

Порядок – это показатель степени при концентрации данного вещества в кинетическом уравнении.

В случае одностадийного процесса показатели степеней равны стехиометрическим коэффициентам:
;
.

Сумму порядков реакции по всем реагирующим веществам называют порядком реакции (
).

Константы скорости реакций различного порядка имеют разную размерность и являются разными физическими величинами, сопоставление их абсолютных значений лишено какого бы то ни было смысла.

Константа скорости первого порядка: ;

Константа скорости второго порядка:
;

Константа скорости третьего порядка:
.

КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ РЕАКЦИЙ:

I . По порядку реакции.n= 0, 1, 2, 3, дробный;

II. По молекулярности.

Молекулярность реакции – это количество молекул, которые принимают участие единовременно в одном акте столкновений. Молекулярность можно определить, лишь установив механизм реакции. В зависимости от числа реагирующих молекул (частиц), участвующих в элементарном акте, различают одномолекулярные (мономолекулярные), двухмолекулярные, тримолекулярные реакции.

К одномолекулярным реакциям типа А→Р относятся процессы распада молекулы на более простые составные части и реакции изомеризации.Двухмолекулярными называются элементарные реакции вида: А+В→Р и 2А→Р (Н 2 +J 2 =2HJ,HJ+HJ=H 2 +J 2 ,CH 3 COOCH 3 +H 2 O=CH 3 COOH+CH 3 OHи т.д.). Значительно реже встречаютсятрехмолекулярные реакции А+2В→Р или 3А→Р. Во всех случаях вид и количество образующихся продуктов реакции не имеет значения, так как молекулярность определяется только числом молекул веществ, реагирующих в элементарном акте.

Порядок реакции устанавливается экспериментально.

Молекулярность и порядок реакции могут совпадать, а могут и различаться. Молекулярность и порядок реакции совпадают только для простых реакций, протекающих только в одну элементарную стадию без участия посторонних молекул.

Молекулярность и порядок реакции не совпадают в трех основных случаях:

1) для сложных реакций;

2) для гетерогенных реакций;

3) для реакций с избытком одного из реагирующих веществ.

КИНЕТИЧЕСКИЕ УРАВНЕНИЯ РЕАКЦИЙ РАЗЛИЧНОГО ПОРЯДКА.

Разграничение реакций по порядку происходит по формальному признаку – сумме показателей степеней в кинетических уравнениях химических реакций, что ограничивает возможности формальной кинетики. Тем не менее формальная кинетика дает возможность использовать математические зависимости для нахождения кинетических параметров. Все приведенные ниже зависимости справедливы для простых гомогенных реакций в закрытых системах при постоянных объеме и температуре (V=const,T=const).

Реакции нулевого порядка (n =0).

В этом случае скорость реакции постоянна, так как постоянны концентрации компонентов реакции.
.

Рассмотрим реакцию омыления сложного эфира:

Скорость омыления эфира будет описываться следующим уравнением:

1 избыток

Если взять большой избыток воды, то её концентрация будет постоянной и кинетическое уравнение примет вид:

Можно сказать, что порядок реакции по частному порядку компонента воды будет нулевым.

Таким образом, большой избыток одного из реагентов уменьшает порядок реакции на определенную величину.

В общем случае кинетическое уравнение реакции нулевого порядка имеет вид:


кинетическое уравнение нулевого порядка

Например, реакция А→Р и её скорость описывается уравнением
, если вещество А взять в большом избытке, то получим:

Константа скорости данной реакции равна:

Разделим переменные и проинтегрируем данное уравнение:

При
постоянная интегрирования равна начальной концентрации С 0 (const= С 0), тогда получаем:

;
приn=0

В качестве критерия скорости реакции нередко используется время половинного превращения , называемоепериодом полураспада.

Период полураспада – это время, в течение которого прореагирует половина взятого вещества.


;

период полураспада для реакции нулевого порядка

Нулевой порядок встречается в гетерогенных и фотохимических реакциях.

Реакции ПЕРвого порядка (n =1).

Примером реакции, строго подчиняющейся уравнению первого порядка, является реакция термического разложения ацетона (хотя реакция в действительности протекает по сложному механизму):

СН 3 СОСН 3 → СО + СН 3 СН 3

Если обозначить концентрацию ацетона в каждый момент времени через С, то при постоянной температуре скорость реакции будет:

Разделив переменные и проинтегрировав уравнение, получим:

При
постоянная интегрированияconst=lnС 0 , тогда:

(1)

(2)

Уравнения (1) и (2) – различные формы кинетического уравнения реакции первого порядка. Они дают возможность вычислить концентрацию реагирующего вещества в любой момент времени по известной величине константы скорости или, наоборот, найти константу скорости реакции при заданной температуре путем определения концентрации в любой момент времени. Выразим период полураспада для реакции первого порядка :

Таким образом, время полупревращения реакции первого порядка не зависит от начальной концентрации исходного вещества и обратно пропорционально константе скорости реакции.

Эту зависимость можно представить графически в координатах
. Так как время половинного превращения в этом случае будет одинаковым, то в каждый момент времени можно определить концентрацию реагирующего вещества.

Для практических целей выгоднее выражать скорость по убыли вещества. Пусть V=const, в момент начала реакции
, число молей реагирующего вещества равно а. Черезсекунд прореагировало х молей вещества А. Тогда в этот момент времени концентрация вещества А будет
или
, где
. После разделения переменных и интегрирования уравнение будет иметь вид:

При
, х=0

, поэтому

А→Р (V=const)

Исходное количество молей (=0)

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Водородный показатель кислотности (рН) Водородный показатель кислотности (рН) Водородный показатель (pH-фактор) Аналитический объёмный метод Водородный показатель (pH-фактор) Аналитический объёмный метод Физическая химия химическая кинетика и катализ Понятие химической кинетики Физическая химия химическая кинетика и катализ Понятие химической кинетики