Почему звезды разного цвета? Описание, фото и видео. Звезды: виды звезд и их классификация по цвету и размеру Как связан цвет звезд с их температурой

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Люблю смотреть на звездное небо. Это очень увлекательно. Когда падает звездочка, то всегда загадываю желание. Лично для меня каждая звезда – это загадочный и неизведанный мир. Ученые доказывают, что кроме Земли во всей Галактике нет жизни. Так ли это… Возможно, на какой-то звездочке и существует что-то. Их миллионы и все так далеко от нас.

Какие бывают звезды по размеру

Каждый человек знает, что такое звезда. Мы с Земли видим маленькое яркое небесное тело. На самом же деле, это очень большие шары, которые состоят и разных газов . Доказано, что в их ядре температура около 6 млн градусов . А в основе звезды лежат в одород (90 %) и гелий (чуть меньше 10% ). По сути, звезда – это тоже Солнце, только поменьше в размерах (или больше). Астрономы часто говорят на них «огненные шары».

Если посмотреть в телескоп, то видно, что каждая звезда разная по размерам, форме и окружена разной туманностью. По размерам звезды делят на три типа:

  • карлики – их большинство. Они намного меньше Солнца , поэтому экономят свою энергию и могут светить на протяжении десятков миллиардов лет;
  • гиганты – их масса примерно такая же, как и Солнца . Менее яркие, чем карлики;
  • сверхгиганты – сравнительно редко встречаются в Солнечной системе. Их диаметр больше 1 млрд. км. Такие звезды в 1 00 раз больше от Солнца .

Классификация звезд по цвету

А вы знаете, что цвет звезды непосредственно зависит от ее температур ы. Самую низкую температуру имеют красные звезды, самую высокую – синие:

  • красные звезды – температура 2,500 -3,500 °C. В основном это карлики, в меньшей мере - гиганты. Относят к холодным звездам;
  • оранжевые – 3,500 – 5000 °C. Тоже холодные звезды, карлики;
  • коричневые 5000 -6000 °C. На них часто говорят планеты, в основном карлики;
  • желтые – 6000 – 7,500 °C. Их относят к солнечному типу. Это звезды-гиганты;
  • белые – 7,500 -10000 °C. Относятся к ряду остывающих;
  • голубые – 10000 – 28000 °C. Имеют голубое свечение. Одни из самых горячих;
  • синие – 28000 – 50000 °C. Самые горячие звезды.

Это нам с Земли кажется, что все звезды практически одинаковые. И мы думаем, что они отличаются лишь яркостью свечения. На самом же деле - все звезды разные по размерах и имеют разную температуру .

Звезды - небесные тела, в которых идут термоядерные реакции. Это наиболее распространённые объекты Вселенной. Более 98% массы видимого космического вещества сосредоточено в этих газовых шарах, остальная часть его рассеяна в межзвёздном пространстве.

Невооруженным глазом и тем более при наблюдениях в бинокль или телескоп нетрудно заметить, что звезды различаются по цвету. Цвет звезд в значительной степени определяется температурой их видимой поверхности.

При хорошей остроте зрения на небе видно около 6000 звёзд, по 3000 в каждом полушарии.

БЛЕСК

Первое, что замечает человек при наблюдении ночного неба, - это различная яркость (блеск) звёзд. Видимый блеск звёзд оценивают в звёздных величинах (см. статью "Звёздные величины"). Исторически сложившаяся система звёздных величин присваивала 1-ю величину наиболее ярким звёздам, а 6-ю - самым слабым, находящимся на пределе видимости невооружённым глазом. Впоследствии, чтобы производить объективные количественные оценки звёздных величин, эту шкалу усовершенствовали. Было принято, что разность в пять звёздных величин соответствует отличию в видимой яркости ровно в 100 раз. Следовательно, разница в одну звёздную величину означает, что звезда ярче другой в прим. 2,512 раза. Для более точных измерений шкала, содержащая только целые числа, оказалась слишком грубой, поэтому пришлось вводить дробные значения. Звёздные величины обозначают индексом т (от лат. magnitude - "величина"), который ставят вверху после числового значения. Например, яркость Полярной звезды 2,3^м.

Чтобы оценить блеск ярчайших небесных светил, шести ступеней было недостаточно. Появились нулевые и отрицательные звёздные величины. Так, полная Луна имеет блеск около -11т (в 10 тыс. раз ярче самой яркой звезды - Сириуса), Венера - до -4 m . С изобретением телескопа астрономы познакомились со звёздами слабее 6m. Даже в бинокль могут быть видны звёзды 10^m, а крупнейшим телескопам доступны объекты 27-29 m .

Видимый блеск - легко измеряемая, важная, но далеко не исчерпывающая характеристика. Для того чтобы установить мощность излучения звезды - светимость, надо знать расстояние до неё.

РАССТОЯНИЯ ДО ЗВЁЗД

Расстояние до далёкого предмета можно определить, не добираясь до него физически. Нужно измерить направления на этот предмет с двух концов известного отрезка (базиса), а затем рассчитать размеры треугольника, образованного концами отрезка и удалённым предметом. Это можно сделать, потому что в треугольнике известна одна сторона (базис) и два прилежащих угла. При измерениях на Земле этот метод называют триангуляцией.

Чем больше базис, тем точнее результат измерения. Расстояния до звёзд столь велики, что длина базиса должна превосходить размеры земного шара, иначе ошибка измерения будет больше измеряемой величины. К счастью, наблюдатель вместе с нашей планетой путешествует в течение года вокруг Солнца, и если он произведёт два наблюдения одной и той же звезды с интервалом в несколько месяцев, то окажется, что он рассматривает её с разных точек земной орбиты, - а это уже порядочный базис. Направление на звезду изменится: она немного сместится на фоне более далёких звёзд и галактик. Это смещение называется параллактическим, а угол, на который сместилась звезда на небесной сфере, - параллаксам. Из геометрических соображений ясно, что он в точности равен тому углу, под которым были бы видны эти две точки земной орбиты со стороны звезды, и зависит как от расстояния между точками, так и от их ориентации в пространстве.

Годичным параллаксом звезды называется угол, под которым с неё был бы виден средний радиус земной орбиты, перпендикулярный направлению на звезду.

Параллаксы даже самых близких звёзд чрезвычайно малы, меньше 1". Здесь требуются очень точные инструменты, поэтому не удивительно, что долгое время (до середины XIX в.) измерить параллаксы не удавалось. И разумеется, это было совершенно невозможно во времена Коперника, который впервые предложил метод параллаксов как прямое следствие своей гелиоцентрической системы (в геоцентрической системе параллактических смещений быть не должно).

С понятием параллакса связано название одной из основных единиц расстояний в астрономии - парсек (сокращение от "параллакс" и "секунда"). Это расстояние до воображаемой звезды, годичный параллакс которой равнялся бы точно 1"". Другими словами, радиус земной орбиты, равный одной астрономической единице (1 а. е.), виден с такой звезды под углом 1". Годичный параллакс любой звезды связан с расстоянием до неё простой формулой:

r = 1/п (пи)

где r - расстояние в парсеках, п - годичный параллакс в секундах.

Из соотношений в параллактическом треугольнике легко вычислить, что 1 парсек (пк) равен 206 265 а. е., или примерно 30 трлн километров. Это очень большая величина, свет преодолевает такой путь за 3,26 года.

Сейчас методом параллакса определены расстояния до многих тысяч звёзд. К сожалению, лишь для ближайших соседей это удаётся сделать с большой точностью. Однако существует ряд методов, с помощью которых расстояние до звезды можно получить косвенным путём, используя различные астрофизические или статистические соотношения. Так, светимость переменных звёзд, называемых цефеидами, оказалась связанной с периодом изменения их блеска. Зная период далёкой переменной звезды и её видимую звёздную величину, легко найти расстояние до звезды. Методы изучения двойных звёзд также позволяют вычислить расстояния до некоторых из них. Есть и другие косвенные способы определения расстояний до звёзд и звёздных систем.

Химический состав звезд

Определяется по спектру (интенсивности фраунгоферовых линий в спектре).Разнообразие спектров звезд объясняется прежде всего их разной температурой, кроме того вид спектра зависит от давления и плотности фотосферы, наличием магнитного поля, особенностями химического состава. Звезды состоят в основном из водорода и гелия (95-98% массы) и других ионизированных атомов, а у холодных в атмосфере присутствуют нейтральные атомы и даже молекулы.

СВЕТИМОСТЬ

Когда были измерены расстояния до ярких звёзд, стало очевидным, что многие из них по светимости значительно превосходят Солнце. Если светимость Солнца принять за единицу, то, к примеру, мощность излучения четырёх ярчайших звёзд неба, выраженная в светимостях Солнца, составит:

L© = 4*10 26 Вт

Сириус 22 L©

Канопус 4700 L©

Арктур 107L©

Вега 50 L©

Это, однако, не означает, что Солнце очень "бледно" выглядит по сравнению с остальными звёздами. Его светимость в звёздном мире выше средней. Так, из нескольких десятков звёзд, расстояния до которых не превышают 15 световых лет, только две - Сириус и Процион - имеют более высокую светимость, чем Солнце, и ещё одна - алюфа Центавра - лишь немного уступает ему, у остальных же светимость значительно ниже. Известны звёзды, излучающие света в десятки тысяч раз меньше, чем Солнце, Интервал светимостей наблюдаемых звёзд оказался невероятно широким: они могут отличаться более чем в миллиард раз!

ЦBET И ТЕМПЕРАТУРА

Одна из легко измеряемых звёздных характеристик - цвет. Как раскалённый металл меняет свой цвет в зависимости от степени нагрева, так и цвет звезды всегда указывает на её температуру. В астрономии применяют абсолютную шкалу температур, шаг которой - один кельвин (1 К) -тот же, что и в привычной нам шкале Цельсия (1 °С), а начало шкалы сдвинуто на -273 (0 К = -273 °С).

Самые горячие звёзды - всегда голубого и белого цвета, менее горячие - желтоватого, холодные - красноватого. Но даже наиболее холодные звёзды имеют температуру 2-3 тыс. Кельвинов - горячее любого расплавленного металла.

Человеческий глаз не способен очень точно определить цвет звезды. Для более точных оценок служат фотографические и фотоэлектрические приёмники излучения, чувствительные к различным участкам видимого (или невидимого) спектра. Ведь цвет звезды зависит от того, на какой участок спектра приходится наибольшая энергия излучения. Сравнение звёздных величин в разных интервалах спектра (например, в голубом и жёлтом) позволяет количественно охарактеризовать цвет звезды и оценить её температуру.


СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЁЗД

Более полную информацию о природе излучения звёзд даёт спектр. Спектральный аппарат, устанавливаемый на телескопе, при помощи специального оптического устройства - дифракционной решётки - раскладывает свет звезды по длинам волн в радужную полоску спектра. Самое коротковолновое видимое излучение соответствует фиолетовому цвету, а наиболее длинноволновое - красному. По спектру нетрудно узнать, какая энергия приходит от звезды на различных длинах волн, и оценить её температуру точнее, чем по цвету.

Многочисленные тёмные линии, пересекающие спектральную полоску, связаны с поглощением света атомами различных элементов в атмосфере звезды. Так как каждый химический элемент имеет свой набор линий, спектр позволяет определить, из каких веществ состоит звезда (оказалось, из тех же, что известны на Земле, а больше всего в звёздах самых лёгких элементов - водорода и гелия). Но даже у одного и того же элемента набор линий и количество энергии, поглощаемой в каждой из них, зависит от температуры и плотности атмосферы. Разработаны специальные физические методы определения характеристик звезды по анализу её спектра.

В горячих голубых звёздах с температурой свыше 10-15 тыс. кельвинов большая часть атомов ионизована, так как лишена электронов. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звёзд линий мало. Самые заметные принадлежат гелию. У звёзд с температурой 5-10 тыс. кельвинов (к ним относится Солнце) выделяются линии водорода, кальция, железа, магния и ряда других металлов. Наконец, у более холодных звёзд преобладают линии металлов и молекул, выдерживающих высокие температуры (например, молекул окиси титана).

В начале XX в. в Гарвардской обсерватории (США) была разработана спектральная классификация звёзд. Основные классы в ней обозначаются латинскими буквами О, В, A, F, G, К, М, они отличаются набором наблюдаемых линий и плавно переходят один в другой (Для запоминания: O Be A Fine Girl Kiss Me или Однажды Бритый Американец Финики Жевал Как Морковь).


Вдоль этой последовательности уменьшается температура звёзд и меняется их цвет - от голубого к красному. Звёзды, относящиеся к классам О, В и А, называют горячими или ранними, F и G - солнечными, К и М - холодными или поздними. Для более точной характеристики каждый класс разделён ещё на 10 подклассов, обозначаемых цифрами от 0 до 9, которые ставятся после буквы. Таким образом, получается плавная последовательность подклассов. Например, за подклассом G9 следует К0 и т. д. "Спектральные паспорта" звёзд выглядят следующим образом:

Солнце G2 Сириус А1 Канопус F0 Арктур К2 Вега А0 Ригель В8 Денеб А2 Альтаир А7 Бетельгейзе М2
Полярная F8

РАЗМЕРЫ ЗВЁЗД

Звёзды так далеки, что даже в самый большой телескоп они выглядят всего лишь точками. Как же узнать размер звезды?

На помощь астрономам приходит Луна. Она медленно движется на фоне звёзд, по очереди "перекрывая" идущий от них свет. Хотя угловой размер звезды чрезвычайно мал, Луна заслоняет её не сразу, а за время в несколько сотых или тысячных долей секунды. По продолжительности процесса уменьшения яркости звезды при покрытии её Луной определяют угловой размер звезды. А зная расстояние до звезды, из углового размера легко получить её истинные (линейные) размеры.

Но лишь небольшая часть звёзд на небе расположена так удачно для земных наблюдателей, что может покрываться Луной. Поэтому обычно используют другие методы оценки звёздных размеров. Угловой диаметр ярких и не очень далёких светил может быть непосредственно измерен специальным прибором - оптическим интерферометром. Правда, такие измерения довольно трудоёмки. В большинстве случаев радиус звезды (R) определяют теоретически, исходя из оценок её полной светимости (L) во всём оптическом диапазоне и температуры (Т). По законам излучения нагретых тел светимость звезды пропорциональна величине R 2 T 4 . Сравнивая какую-либо звезду с Солнцем, получаем удобную для вычислений формулу:

позволяющую найти радиус звезды по её температуре и светимости (величины R®, L® и Т® = 6000 К известны).

Итак, по своим размерам, звезды делятся (название: карлики, гиганты и сверхгиганты ввел Генри Рессел в 1913г, а открыл их в 1905г Эйнар Герцшпрунг, введя название "белый карлик"), введены с 1953 года на:

  • Сверхгиганты (I)
  • Яркие гиганты (II)
  • Гиганты (III)
  • Субгиганты (IV)
  • Карлики главной последовательности (V)
  • Субкарлики (VI)
  • Белые карлики (VII)

Измерения показали, что самые маленькие звёзды, наблюдаемые в оптических лучах, - так называемые белые карлики - имеют в диаметре несколько тысяч километров. Размеры же наиболее крупных - красных сверхгигантов - таковы, что, если бы можно было поместить подобную звезду на место Солнца, большая часть планет Солнечной системы оказалась бы внутри неё.

МАССА ЗВЕЗДЫ

Важнейшей характеристикой звезды является масса. Чем больше вещества собралось в звезду, тем выше давление и температура в её центре, а это определяет практически все остальные характеристики звезды, а также особенности её жизненного пути.

Прямые оценки массы могут быть сделаны только на основании закона всемирного тяготения. Такие оценки удалось получить для большого числа звёзд, входящих в двойные системы, измеряя скорости их движения вокруг общего центра масс. Все другие способы вычисления массы считаются косвенными, поскольку они строятся не на законе анализе тех звёздных характеристик, которые так или иначе связаны с массой Чаще всего это светимость. Для многих звёзд выполняется простое правило: чем выше светимость, тем больше масса. Эта зависимость нелинейна: например, с увеличением массы вдвое светимость возрастает более чем в 10 раз.

Массы звёзд заключены в пределах от нескольких десятков примерно до 0,1 массы Солнца. (При меньшей массе температура даже в центре тела будет недостаточно высока для выработки термоядерной энергии, такие объекты окажутся слишком холодными, их нельзя причислить к звёздам.) Таким образом, по массе звёзды различаются всего в несколько сот раз - гораздо меньше, чем по размерам (в сотни тысяч раз) или по светимости (более миллиарда раз).

Анализируя важнейшие характеристики звёзд, сопоставляя их друг с другом, учёные смогли установить и то, что недоступно прямым наблюдениям: как устроены звёзды, как они образуются и изменяются в течение жизни, во что превращаются, растратив запасы своей энергии.

Диаграмма Герцшпрунга-Рассела.


Звезды главной последовательности подразделяются на классы, которые мы рассмотри ниже:

Класс O - это голубые звезды, их температура 22 000 °С. Типичные звезды - Дзета в созвездии Кормы, 15 Единорога.

Класс В – это бело-голубые звезды. Температура их 14 000 °С. Температура их 14 ООО °С. Типичные звезды: Эпсилон в созвездии Ориона, Ригель, Колос.

Класс A - это белые звезды. Их температура 10 000 °С. Типичные звезды - Сириус, Вега, Альтаир.

Класс F – это бело-желтые звезды. Температура их поверхности 6700 °С. Типичные звезды Канопус, Процион, Альфа в созвездии Персея.

Класс G - это желтые звезды. Температура 5 500 °С. Типичные звезды: Солнце (спектр С-2), Капелла, Альфа Центавра.

Класс K - это желто оранжевые звезды. Температура 3 800 °С. Типичные звезды: Артур, Поллукс, Альфа Большой Медведицы.

Класс M -. Это красные звезды. Температура 1 800 °С. Типичные звезды: Бетельгейзе, Антарес


Кроме звезд главной последовательности, астрономы выделяют такие типы звезд:

Коричневые карлики - звезды, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Их спектральный класс М - T и Y. В коричневых карликах могут протекать термоядерные процессы, но их масса все же слишком мала, чтобы начать реакцию превращения атомов водорода в атомы гелия, являющуюся главным условием для жизни полноценной звезды. Коричневые карлики - довольно «тусклые» объекты, если этот термин может быть применим к подобным телам, и астрономы исследуют их в основном благодаря выделяемому ими инфракрасному излучению.


Красные гиганты и сверхгиганты - это звезды с довольно низкой эффективной температурой в 2700- 4700°С, однако с огромной светимостью. Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.


Звезды типа Типа Вольфа - Райе - класс звезд, для которых характерна очень высокая температура и светимость. Звезды Вольфа - Райе отличаются от других горячих звезд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота в разных степенях ионизации. Окончательной ясности происхождения звезд типа Вольфа - Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звезд, сбросившие значительную часть массы на каком-то этапе своей эволюции.


Звезды типа T Тельца - класс переменных звезд, названный по имени своего прототипа Т Тельца (протозвезды на конечном этапе развития). Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и хромосферной активности. Они принадлежат к звездам спектральных классов F, G, K, M и имеют массу меньше двух солнечных. Температура их поверхности такая же, как и у звезд главной последовательности той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие.


Яркие голубые переменные, также известные как переменные типа S Золотой Рыбы - это очень яркие голубые пульсирующие гипергиганты, названные по звезде S Золотой Рыбы. Встречаются исключительно редко. Яркие голубые переменные могут сиять в миллион раз сильнее, чем Солнце и их масса может быть 150 солнечных, подходя к теоретическому пределу массы звезды, что делает их самыми яркими, горячими и мощными звездами во Вселенной.


Белые карлики – тип «умирающих» звезд. Небольшие звезды типа нашего Солнца, которые широко распространены во Вселенной в конце своей жизни превратятся в белых карликов - это маленькие звезды(бывшее ядра звезд) с очень высокой плотностью, которая в миллион раз выше плотности воды. Звезда лишена источников энергии и, постепенно остывает, становясь темной и невидимой, однако процесс остывания может длиться миллиарды лет.


Нейтронные звезды – класс звезд, как и белые карлики, образуются после гибели звезды с массой 8-10 масс Солнца (звезды с большей массы уже образуют черные дыры). В данном случае ядро сжимается до тех пор, пока большинство частиц не превратится в нейтроны. Одной из особенности нейтронных звезд является сильное магнитное поле. Благодаря ему и быстрому вращению, приобретенному звездой из-за несферического коллапса, в космосе наблюдаются радио- и рентгеновские источники, которые называются пульсары.

Эволюция звезд

В ясную ночь, присмотревшись, можно увидеть на небе мириады разноцветных звезд. Задумывались ли вы, от чего зависит оттенок их мерцания, и какие бывают цвета небесных светил?

Цвет звезды определяется температурой ее поверхности . Россыпь светил, словно драгоценные камни, имеет бесконечно разнообразные оттенки, словно волшебная палитра художника. Чем горячее объект, тем энергия излучения с его поверхности выше, а значит, короче длина испускаемых волн.

Даже незначительная разница в длине волны меняет воспринимаемый человеческим глазом цвет. Самые длинные волны имеют красный оттенок, с увеличением температуры он меняется на оранжевый, желтый, переходит в белый, а затем становится бело-синим.

Газовая оболочка светил выполняет функции идеального излучателя. По цвету звезды можно вычислить ее возраст и температуру поверхности. Конечно, оттенок при этом определяется не «на глаз», а с помощью специального инструмента - спектрографа.

Изучение спектра звезд - фундамент астрофизики нашего времени. То, какие бывают цвета небесных светил, является чаще всего единственной доступной для нас информацией о них.

Голубые звезды

Звезды голубого цвета - самые большие и горячие. Температура их внешних слоев составляет, в среднем, 10000 по Кельвину, а может достигать и 40000 для отдельных звездных гигантов.

В этом диапазоне излучают новые звезды, только начинающие свой «жизненный путь». Например, Ригель , одна из двух главных светил созвездия Ориона, голубовато-белая.

Желтые звезды

Центр нашей планетной системы - Солнце - имеет температуру поверхности, превосходящую 6000 по Кельвину. Из космоса оно и подобные ему светила выглядят ослепительно белыми, хотя с Земли кажутся, скорее, желтыми. Золотые звезды имеют средний возраст.

Из других известных нам светил белой звездой является и Сириус , хотя на глаз его цвет определить довольно сложно. Это происходит потому, что он занимает низкое положение над горизонтом, и по пути к нам его излучение сильно искажается за счет многократного преломления. В средних широтах Сириус, часто мерцая, способен всего за полсекунды продемонстрировать весь цветовой спектр!

Красные звезды

Темный красноватый оттенок имеют звезды с низкой температурой , например, красные карлики, масса которых составляет менее 7,5% от веса Солнца. Их температура ниже 3500 по Кельвину, и хотя их свечение представляет собой богатый перелив множества цветов и оттенков, мы видим его красным.

Гигантские светила, чье водородное топливо закончилось, также выглядят красными или даже коричневыми. В целом, в этом диапазоне спектра находится излучение старых и остывающих звезд.

Отчетливый красный оттенок имеет вторая из главных звезд созвездия Ориона, Бетельгейзе , а чуть правее и выше ее располагается на карте неба Альдебаран , имеющий оранжевый цвет.

Старейшая красная звезда из ныне существующих - HE 1523-0901 из созвездия Весов - гигантское светило второго поколения, найденное на окраинах нашей галактики на удалении в 7500 световых лет от Солнца. Ее возможный возраст составляет около 13,2 миллиарда лет, что не намного меньше предполагаемого возраста Вселенной.

Многие люди думают, что все звезды на небе белого цвета. (Кроме Солнца, которое, конечно, желтое .) Как это ни удивительно, но на самом деле все как раз наоборот : наше , а звезды бывают разных цветов - голубоватые, белые, желтоватые, оранжевые и даже красные!

Другой вопрос, можно ли увидеть цвет звезд невооруженным глазом ? Тусклые звезды кажутся белыми просто потому, что они слишком слабы для возбуждения в сетчатке наших глаз колбочек - специальных клеток-рецепторов, отвечающих за цветное зрение. Чувствительные к слабому свету палочки не различают цветов. Именно поэтому в темноте все кошки серые, а все звезды белые.

А как насчет ярких звезд?

Давайте посмотрим на созвездие Ориона, а вернее, на две его ярчайшие звезды, Ригель и Бетельгейзе. (Орион - центральное созвездие зимнего неба. Наблюдается по вечерам на юге с конца ноября по март.)

Звезда Бетельгейзе выделяется среди других в созвездии Ориона своим красноватым оттенком. Фото: Bill Dickinson/APOD

Даже беглого взгляда хватит, чтобы заметить красный цвет Бетельгейзе и голубовато-белый цвет Ригеля. Это не кажущееся явление - звезды действительно имеют разные цвета. Разница в цвете определяется только температурой на поверхностях этих звезд. Белые звезды горячее желтых, а желтые, в свою очередь, горячее оранжевых. Самые горячие звезды голубовато-белого цвета, а самые холодные - красные. Таким образом, Ригель намного горячее Бетельгейзе .

Какого цвета на самом деле Ригель?

Иногда, правда, все не так очевидно. В морозную или ветреную ночь, когда воздух неспокоен, вы можете наблюдать странную вещь - Ригель быстро-быстро меняет свою яркость (попросту говоря, мерцает) и переливается разными цветами! Иногда кажется, что он голубой, иногда - что белый, а затем на мгновение проскакивает и красный цвет! Получается, что Ригель вовсе не голубовато-белая звезда - она вообще непонятно какого цвета!

Голубой Ригель и отражательная туманность Голова Ведьмы. Фото: Michael Heffner/Flickr.com

Ответственность за это явление лежит целиком и полностью на атмосфере Земли. Низко над горизонтом (а Ригель в наших широтах высоко никогда не поднимается) звезды часто мерцают и переливаются разными цветами. Их свет проходит через очень большую толщу атмосферы, прежде чем достичь наших глаз. По пути он преломляется и отклоняется в слоях воздуха с разной температурой и плотностью, создавая эффект дрожания и быстрой смены цвета.

Наилучший пример переливающейся разными цветами звезды - белый Сириус , который находится на небе по соседству с Орионом. Сириус - ярчайшая звезда ночного неба и потому ее мерцание и быстрое изменение цвета гораздо заметней, чем у звезд по соседству.

Хотя звезды бывают разных цветов, невооруженным глазом лучше всего различаются белые и красноватые. Из всех ярких звезд, пожалуй, только Вега выглядит отчетливо голубоватой.

Вега в телескоп похожа на сапфир. Фото: Fred Espanak

Цвета звезд в телескопы и бинокли

Оптические инструменты - телескопы, бинокли и подзорные трубы - покажут гораздо более яркую и широкую палитру звездных цветов. Вы увидите ярко-оранжевые и желтые звезды, голубовато-белые, желтовато-белые, золотистые и даже зеленоватые звезды! Насколько эти цвета реальны?

В основном они все реальны! Правда, зеленых звезд в природе не бывает (почему - отдельный вопрос), это оптический обман, хотя и очень красивый! Наблюдение зеленоватых и даже изумрудно-зеленых звезд возможно только в , когда очень близко есть желтая или желтовато-оранжевая звезда.

Телескоп-рефлектор гораздо точнее передает цвета, чем рефрактор , поскольку линзовые телескопы страдают в той или иной степени хроматической аберрацией, а зеркала рефлектора отражают свет всех цветов одинаково.

Очень интересно понаблюдать за разноцветными звездами сначала невооруженным глазом, а затем в бинокль или в телескоп. (Наблюдая в телескоп, используйте минимальное увеличение.)

В таблице ниже приведены цвета для 8 ярких звезд. Блеск звезд дан в звездных величинах. Буква v означает, что блеск звезды переменный - она светит в силу физических причин то ярче, то тусклее.

Звезда Созвездие Блеск Цвет Вечерняя видимость
Сириус Большой Пёс -1.44 Белый, но часто сильно мерцает и переливается разными цветами из-за атмосферных условий Ноябрь - март
Вега Лира 0.03 Голубая Круглый год
Капелла Возничий 0.08 Желтая Круглый год
Ригель Орион 0.18 Голубовато-белый, но часто сильно мерцает и переливается разными цветами из-за атмосферных условий Ноябрь - апрель
Процион Малый Пёс 0.4 Белая Ноябрь - май
Альдебаран Телец 0.87 Оранжевый Октябрь - апрель
Поллукс Близнецы 1.16 Бледно-оранжевая Ноябрь - июнь
Бетельгейзе Орион 0,45v Оранжево-красная Ноябрь - апрель

Разноцветные звезды на декабрьском небе

В декабре можно найти целую дюжину ярких цветных звезд! О красной Бетельгейзе и голубовато-белом Ригеле мы уже говорили. В исключительно спокойные ночи поражает своей белизной Сириус. Звезда Капелла в созвездии Возничего для невооруженного глаза кажется практически белой, зато в телескоп обнаруживает отчетливый желтоватый оттенок.

Обязательно взгляните на Вегу , которая с августа по декабрь видна по вечерам высоко в небе на юге, а затем на западе. Вегу недаром называют небесным сапфиром - настолько глубок ее голубой цвет при наблюдении в телескоп!

Наконец, у звезды Поллукс из созвездия Близнецов вы обнаружите бледно-оранжевое сияние.

Поллукс, ярчайшая звезда в созвездии Близнецов. Фото: Fred Espanak

В конце замечу, что цвета звезд, которые мы наблюдаем визуально, во многом зависят от чувствительности наших глаз и субъективного восприятия. Возможно, вы мне возразите по всем пунктам и скажете, что цвет Поллукса густо-оранжевый, а Бетельгейзе - желтовато-красный. Проведите эксперимент! Посмотрите на звезды, приведенные в таблице выше, сами - невооруженным глазом и через оптический инструмент. Дайте свою оценку их цвета!

Post Views: 13 595

О звездах

Послушайте! Ведь, если звезды зажигают -

значит - это кому-нибудь нужно?

Значит - это необходимо,

чтобы каждый вечер

над крышами

загоралась хоть одна звезда?!

И физиков, и лириков тянет поговорить о звездах, а художники пытаются запечатлеть звездное небо на своих полотнах.
Но любуясь мерцающими звездами на ночном небе, мы иногда вспоминаем, что звезды - это далекие, огромные и разнообразные миры.

Какие же бывают звезды?
Звезда с точки зрения астрономии — массивный светящийся газовый шар той же природы, что и Солнце .
Образуются звезды из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия.
Звезды отличаются друг от друга по массе, спектру свечения, по этапам эволюции.
И вот какими бывают звезды

Спектральные классы
По спектральному классу звезды варьируются от горячих голубых до холодных красных, по массе — от 0,0767 до 300 солнечных масс. Светимость и цвет звезды зависит от температуры её поверхности и массы. Спектральные классы - по порядку от горячих к холодным такие: (O, B, A, F, G, K, M).

Звездная диаграмма
В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» — «спектральный класс » различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой - главной последовательности звезд.


На главной последовательности находится и наше Солнце — типичная звезда спектрального класса G, желтый карлик.
Обозначение класса звёзд: сначала идет буквенное обозначение спектрального класса, далее арабскими цифрами спектральный подкласс, потом римскими цифрами идет класс светимости (номер области на диаграмме). Солнце имеет класс G2V.

Звезды главной последовательности
Эти звезды находятся на таком этапе жизни, при котором энергия излучения полностью компенсируется энергией, протекающих в ее центре, термоядерных реакций . Свечение у таких звезд может быть различное, в зависимости от вида реакции.
В этом классе ученые выделяют такие виды звезд: О- голубые, В- бело-голубые, А- белые, F- бело-желтые; G- желтые; К- оранжевые; М- красные.
Самую высокую температуру имеют звезды голубые, самую низкую - красные . Солнце относится к желтым разновидностям звезд, его возраст составляет чуть более 4,5 млрд. лет .
Гигантами считаются светила, имеющие диаметр и массу в десятки тысяч раз превосходящие Солнце.
Кстати, для запоминания классов звезд есть забавная мнемоническая фраза : Один Бритый Англичанин Финики Жует, Как Морковь (O, B, A, F, G, K, M)..

Оказаывается, многообразие видов звезд - это отражение количественных характеристик звезд (масса, химический состав) и эволюционного этапа на котором в данный момент находится звезда.
ЗВЁЗДНАЯ ЭВОЛЮЦИЯ в астрономии — последовательность изменений, которым звезда подвергается в течение жизни.
Звезда за миллионы и миллиарды лет своей жизни проходит самые разные стадии эволюции…

Эволюция Солнца

Звезда может из звезды-гиганта превратиться в Белого карлика или Красного гиганта, а потом вспыхнуть Сверхновой или превратиться в страшную Черную дыру.
Как же происходят эти превращения?

ЭВОЛЮЦИЯ ЗВЕЗД
Матерью каждого небесного тела можно именовать гравитацию, а отцом - сопротивление материи сжатию.
Звезда начинает свою жизнь как облако межзвёздного газа , сжимающееся под действием собственного тяготения и принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура возрастает.
Когда температура в центре достигает 15-20 млн , начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой !
Голубой гигант — звезда спектрального класса O или B . Это молодые горячие массивные звёзды. Массы голубых гигантов достигают 10—20 масс Солнца , а светимость в тысячи раз превышает солнечную.
На первой стадии жизни звезды в ней доминируют реакции водородного цикла . Когда в центре звезды весь водород превращается в гелий , термоядерные реакции прекращаются.

Красный гигант - одна из стадий эволюции звезды.
Диаметр светила увеличивается к моменту выгорания водорода в его ядре. Свечение раскаленных газов приобретает красный оттенок, а температура их сравнительно невысока.

Без давления, возникавшего в ходе реакций и уравновешивавшего собственное гравитационное притяжение звезды, звезда снова начинает сжатие . Температура и давление повышаются.
Коллапс продолжается до тех пор, пока при температуре около 100 млн не начнутся термоядерные реакции с участием гелия .
Возобновившееся термоядерное горение вещества, гелия, становится причиной чудовищного расширения звезды, её размер увеличивается в 100 раз! Звезда становится красным гигантом , а фаза горения гелия продолжается несколько миллионов лет.

Красные гиганты и сверхгиганты —звёзды с низкой температурой (3000 — 5000 К), однако с огромной светимостью. Абсолютная звёздная величина таких объектов −3m—0m, а максимум их излучения в инфракрасном диапазоне.
Практически все красные гиганты являются переменными звёздами .
Происходит дальнейшее термоядерное превращение гелия (гелий — в углерод , углерод — в кислород , кислород — в кремний, и наконец — кремний в железо).
Красный карлик
Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются такими миллиарды лет, а массивные сверхгиганты изменятся уже через несколько миллионов лет после формирования.
Звёзды среднего размера , как Солнце, остаются на главной последовательности около 10 миллиардов лет.
После гелиевой вспышки «загораются» углерод и кислород; это вызывает сильную перестройку звезды. Размер атмосферы звезды увеличивается, и она начинает терять газ в виде потоков звёздного ветра .

Белый карлик или черная дыра?
Судьба звезды зависит от её исходной массы.
Ядро звезды может закончить эволюцию:
как белый карлик (маломассивные звёзды),
как нейтронная звезда (пульсар) — если её масса превышает предел Чандрасекара,
и как чёрная дыра — если масса превышает предел Оппенгеймера — Волкова.
В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых .

Белые карлики
Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденного ядра не уравновесит гравитацию .

В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом . Она лишена источников энергии и, остывая, становится тёмной и невидимой .

Новая звезда — тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m).

Сверхновые звёзды — звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали сильнее «новых звёзд». На самом деле все они новыми не являются, вспыхивают уже существующие звёзды. Но иногда вспыхивали звёзды, которые ранее были на небе не видны, что и создавало эффект появления новой звезды.

Гиперновая коллапс тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; очень большая сверхновая. Термин используется для описания взрывов звёзд с массой от 100 и более масс Солнца.

Переменная звезда — это звезда, за всю историю наблюдения которой хоть один раз менялся блеск. Причин переменности много. Например, если звезда двойная, то одна звезда, проходя по диску другой звезды, будет его затмевать.


Но в большинстве случаев переменность связана с нестабильными внутренними процессами

Чёрная дыра — область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света).


Граница этой области называется горизонтом событий , а её характерный размер — гравитационным радиусом. В простейшем случае он равен радиусу Шварцшильда .
R ш=2G M/с 2
где c — скорость света, M — масса тела, G — гравитационная постоянная.
………………………
Нейтронная звезда — астрономический объект, состоящий из нейтронной сердцевины и тонкой (∼1 км) коры вырожденного вещества, содержащей тяжёлые атомные ядра. Массы нейтронных звёзд сравнимы с массой Солнца, но радиусы составляют лишь десятки километров . Считается, что нейтронные звезды рождаются во время вспышек сверхновых .

Так Крабовидная туманность в созвездии Тельца , является остатками сверхновой , взрыв которой наблюдался, согласно записям арабских и китайских астрономов, 4 июля 1054 года . Вспышка была видна на протяжении 23 дней невооружённым глазом даже в дневное время.
Крабовидная туманность в условных цветах (синий — рентгеновский, красный — оптический диапазон). В центре — пульсар .

Пульсар — космический источник периодического радио- (радиопульсар), оптического, рентгеновского или гамма излучений, приходящих на Землю в виде периодических импульсов .
Первый пульсар, нейтронная звезда , был открыт в июне 1967 г. Джоселин Белл, аспиранткой Э. Хьюиша. Она открыла объекты, излучающие регулярные импульсы радиоволн . Феномен позже был объяснён, как направленный радиолуч от вращающегося объекта — своеобразный «космический маяк». Но обычные звёзды разрушились бы от столь высокой скорости вращения, на роль «маяков» подходили только нейтронные звезды.
За этот результат Хьюиш получил в 1974 году Нобелевскую премию.
Интересно , что сначала пульсару присвоили имя LGM-1 (от Little Green Men — маленькие зелёные человечки). Такое название было связано с предположением, что эти периодические импульсы радиоизлучения имеют искусственное происхождение . Потом гипотеза о сигналах внеземной цивилизации отпала.

Цефеиды — класс пульсирующих переменных звёзд с точной зависимостью период—светимость, названный по звезде δ Цефея . Одной из наиболее известных цефеид является Полярная звезда .
Коричневые карлики это тип звезд, в которых ядерные реакции не компенсировали потери энергии на излучение. Их существование предсказали в середине XX в, а в 2004 году коричневый карлик впервые был обнаружен.


На сегодняшний день открыто достаточно таких звезд, их спектральный класс М — T.

Черный карлик -конечная стадия эволюции звезды с небольшой массой, остывшая и безжизненная.
......................
Другие Космические объекты

Белая дыра
Это гипотетический физический объект во Вселенной, в область которого ничто не может войти. Белая дыра является временной противоположностью чёрной дыры.
Квазары
Квазар — это чрезвычайно далекий, внегалактический объект с высокой светимостью и малым угловым размером, далёкое активное ядро галактики . По одной из теорий, квазары - галактики на начальном этапе развития, в которых сверхмассивная чёрная дыра поглощает окружающее вещество.
От слов quas istell a r («квазизвёздный», «похожий на звезду ») и (« »), дословно «квазизвёздный радиоисточник».

Галактика (др.-греч. молочный) — гигантская система из звёзд , звёздных скоплений , межзвёздного газа . Все объекты в составе галактики участвуют в движении относительно общего



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гэвин Кеннеди - Договориться можно обо всем! Гэвин Кеннеди - Договориться можно обо всем! Иван Ефремов: Таис Афинская Иван Ефремов: Таис Афинская Что болит в левом боку под ребрами? Что болит в левом боку под ребрами?