Интересные факты и полезные советы. Исповедание великого логика Теорема геделя и ее междисциплинарное использование

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

А б с у р д н о с т ь рационализма
о т к р ы л а с ь м а т е м а т и к е -
той самой науке, на которой он пытался утвердиться.
В. Тростников

Достижения Курта Геделя в современной логике
совершенно монументальны, - на самом деле они
есть более, чем монумент, это веха на
интеллектуальном ландшафте, которая останется
зримой издалека… Предмет логики определенным
образом изменил свою природу и возможности после открытий Геделя.
Джон фон Нейман

Создатель теории множеств Георг Кантор, а затем его последователи обнаружили ряд неразрешимых парадоксов множества порядковых чисел, указывающих на то, что сама конструкция такого множества внутренне противоречива и практически логически нереализуема. После установления внутренней противоречивости первого из возможных множеств математические парадоксы посыпались как из рога изобилия, приведя математиков к настоящей панике. Любопытна реакция другого великого математика Германа Вейля, разрешающая парадокс запретом: "...Нельзя допустить существование некоей определенной в себе и замкнутой совокупности всех возможных множеств натуральных чисел или всех возможных свойств натуральных чисел".

Э.Касснер, Д.Р.Ньюмен: "Когда математик говорит, что такие-то утверждения истинны для некоторого объекта, то это может быть интересно и наверняка безопасно. Но когда он пытается распространить свое утверждение на все объекты, то хотя это значительно более интересно, но и намного опаснее. В переходе от одного ко всему, от специального к общему математика добилась своих величайших успехов, но и испытала свои самые серьезные неудачи, самую важную часть которых составляют логические парадоксы".

Сегодня мы понимаем, что парадоксы теории множеств в частности и математики в целом связаны с тем, что множество не есть универсум, оно недостаточно для отражения всеобщего в знании, целостности знания как такового. Предельные конструкции, ведущие к единому или всеобщему, часто исключаются из математического анализа, ведя его к указанным парадоксам.

Но если парадоксы теории множеств непосредственно свидетельствуют об неуниверсальности понятия множества в познании, что само по себе есть первый и необходимый шаг в направлении к концепции целостности, то они все же не несут в себе ничего конструктивного для формулировки идеи целостности. В них, правда, содержится намек на то, как и чем ограниченным оказывается понятие множества - свойство единства и связи, взаимозависимости и замкнутости элементов и образуемой ими совокупности, ведущее к непредикативности в определениях. Однако этого еще явно мало для перехода от понятия множества к понятию целостности.

Неэвклидова геометрия Гаусса-Лобачевского–Больяи-Швейкарта и обнаружение антиномий в теории множеств сотрясло математику XIX века, поставив под сомнение ее основы. Подумайте, писал Давид Гильберт, в математике - этом образце достоверности и истинности - образование понятий и ход умозаключений приводит к нелепостям. Где же искать надежность и истинность, если даже само математическое мышление дает осечку?

И вот Давид Гильберт (1862-1943) выдвигает программу построения внутренне непротиворечивой математики, программу математического обоснования науки с целью изгнания из нее недостоверности. Из сформулированных Д.Гильбертом 23 знаменитых проблем математики первые два места занимают связанные между собой проблема континуума и проблема непротиворечивости аксиом арифметики. Последняя, по словам Гильберта, представляет собой обоснование правил арифметических действий совместно с аксиомой непрерывности: доказательство непротиворечивости аксиом арифметики вещественных чисел равносильно, по Гильберту, доказательству отсутствия противоречий в определении вещественного числа и континуума. Иными словами, Д.Гильберт ставил задачу наряду с доказательством непротиворечивости аксиом арифметики дать строгое обоснование понятия вещественного числа и, тем самым, определенное решение проблемы континуума: "В самом деле, если удастся полностью доказать непротиворечивость этих аксиом, то все соображения, которые подчас приводились против существования понятия вещественных чисел, теряют всякое основание".

Д.Гильберт не сомневался в достижимости обоснования понятия вещественного числа и, следовательно, доказательства непротиворечивости континуума вещественных чисел, совершенно не предполагая, сколь далеко заведут математику его вопросы... В процессе развития идей Гильберта, стало ясно, что обоснование непротиворечивости математической теории приобретает точный смысл лишь в том случае, когда теория полностью формализована, то есть все ее предложения могут быть записаны на строго однозначном символическом языке. Формализация - единственное средство устранения двусмысленности используемого языка.

Полностью формализованную математическую теорию аллегорически можно представить как некую математическую сверхформулу, поддающуюся строгому математическому исследованию на предмет ее непротиворечивости, с помощью не вызывающих сомнения средств. Д.Гильберт высказал предположение о возможности такого доказательства непротиворечивости арифметики существенно финитными средствами. Но программа формализации математики так и не была никогда выполнена, а цель самого Гильберта - «выяснить, какие именно аксиомы, гипотезы и средства необходимы для доказательства геометрических истин» - внезапно обернулась миром множественных геометрий, которые можно получить последовательным отбрасыванием тех или иных аксиом. Попытка связать в единое целое структуру всех геометрий окончилась, по словам П.Ремсея, превращением математики в игру:

Математика превращается в некий вид игры, ведущейся на бумаге при помощи ничего не значащих значков вроде нолей и крестиков... Поскольку каждый математик делает значки на бумаге, надо признать, что формалистическое учение содержит только правду; но трудно предположить, чтобы это была вся правда: ведь наш интерес к символической игре, конечно, происходит от возможности дать смысл, по крайней мере, некоторым из делаемых нами значков и от надежды, что после придачи им смысла они будут выражать знание, а не ошибку.

Теорему Гёделя о неполноте арифметики часто называют самым монументальным интеллектуальным достижением невероятной глубины и силы. С философской точки зрения это подразумевает, что любое высказывание самонедостаточно и самопротиворечиво. После открытий Курта Гёделя и других математиков стало ясно, что идея абсолютного и окончательного обоснования математики, как и полной формализации научного знания, вообще несостоятельна. Или чуть по-иному: «объективная истина» - фикция...

К счастью (да позволят нам на минуту немножко легкомыслия в таком серьезном вопросе), ни Д.Гильберту, ни кому-либо из его блестящих последователей и соратников не удалось выполнить эту программу - не из-за недостатка изобретательности, а попросту из-за ее невыполнимости. Однако, как это не раз бывало в истории математики, в процессе решения этой утопической задачи было накоплено подлинное богатство в виде новых теорий, новых понятий, новых методов.

В 1931 году Курт Гёдель опубликовал две теоремы о неполноте, смысл которых заключается в установлении принципиальной неосуществимости программы Д.Гильберта создать полную и непротиворечивую систему оснований математики. Хотя в этих теоремах ("Uber die unentscheidbaren Satze der formalen Systeme") речь идет об арифметике натуральных чисел, установленные им ограничения можно распространить на любую арифметику натуральных чисел.

В первой теореме К.Гёделя доказано, что в непротиворечивой формализованной арифметике существует, по крайней мере, одно предложение, которое не выводимо в ней вместе со своим отрицанием. Согласно второй теореме Гёделя, непротиворечивость арифметики не может быть доказана средствами, формализованными в ней самой, то есть финитными средствами, как того хотел Гильберт. Доказательство непротиворечивости арифметики натуральных чисел требует обращения к посылкам, выходящим за рамки рассматриваемой системы, то есть такое доказательство может иметь лишь относительный смысл.

К.Гёдель доказал, что сконструированное истинное арифметическое высказывание нельзя ни доказать, ни опровергнуть, то есть вывести дедуктивным путем из аксиом арифметики ни само это высказывание, ни его отрицание. Иными словами, в любой формализованной системе, способной выразить арифметику натуральных чисел, имеются неразрешимые (недоказуемые и вместе с тем неопровержимые в данной системе) предложения, которые тем не менее содержательно очевидны. Это означает, что в любой логике существуют такие теоретические положения, которые, если они истинны, не могут быть выведены из предпосылок, а если вытекают из предпосылок, то не могут быть признаны истинными.

Теорему Гёделя можно переформулировать следующим образом: «Все непротиворечивые аксиоматические формулировки теории чисел содержат неразрешимые суждения».

Это означает, что никакая достаточно большая система, вместе со своим алфавитом и своей грамматикой (или со своим конечным набором знаков и правилами их преобразования) НЕ ЯВЛЯЕТСЯ ПОЛНОЙ. «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)». Несколько упрощая, можно сказать, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют ее обобщения.

Доказательство, данное Гёделем, не так просто. Однако, положенная в его основу идея довольно проста и восходит к «парадоксу лжеца», известному еще древним грекам. Гёдель перевел на язык математики утверждение, утверждавшее о самом себе, что оно недоказуемо в данной формальной системе. А если утверждение о недоказуемости доказуемо, то оно ложно…

Теорема Гёделя говорит о том, что арифметика натуральных чисел включает содержание, которое не может быть выражено исключительно на основе логических правил образования и преобразования соответствующей формальной системы. Из состава логики нельзя исключать предложения, которые нельзя не признать истинными, но которые тем не менее неразрешимы на основе правил построения соответствующих формальных систем.

Из теорем Гёделя следует, что никакое понятие истинным образом не раскрывается внутри области его существования или, по-иному, что само раскрытие предмета требует выхода за пределы осознанных смыслов, составляющих мир наших представлений: «Поэтому бессмысленно требовать изначальных доказательств сказанного, так как все они лежат по эту сторону привычного смыслового пространства». На обыденном языке суть аналитики Гёделя заключается в том, что мы никогда не сможем получить ВСЮ правду о мире, то есть человеческое познание внутренне ограничено, то есть какие-то аспекты мира всегда будут сопротивляться описанию.

Эти положения, естественно, не являются результатами эмпирических наблюдений, но они не являются аналитическими и логическими истинами в соответствии с точными критериями аналитичности. Иными словами, математику невозможно свести к конечному числу взаимно непротиворечивых аксиом, образующих замкнутую систему. Нельзя построить внутренне непротиворечивую логику и свести к ней математику или познание в целом. В арифметике и вообще всякой теории, являющейся формализацией арифметики, всегда имеется неразрешимое высказывание. Речь идет здесь не о семантической, а именно о математической неполноте содержательных математических интерпретаций.

Значение полученных Куртом Гёделем и затем Герхардом Генценом результатов, далеко выходит за пределы математики, свидетельствуя о том, что даже в царице наук возможна лишь относительная непротиворечивость, то есть абсолютное знание недостижимо.

Дуглас Хофштадтер в замечательной книге "Гёдель, Эшер, Бах" пошел еще дальше: теорема Гёделя имеет глубоко скрытую цель - раскрыть тайну слова "я": "Эта абстрактная структура, как мне казалось, и была ключом к загадке самопознания и возникновения "я". Также эта книга описывает, как человек может думать о себе, как он может себя познавать, а также способы представления и сохранения знаний, методы и ограничения символьного представления и даже фундаментальное понятие «значение».

После Гёделя Алан Туринг тоже выяснил, что многие математические предложения «нерешаемы», то есть в конечном счете нельзя определить, являются ли предложения истинными или ложными. Еще один ученый Трауб попытался перефразировать вопрос «Является ли реальный мир слишком сложным для нашего понимания?» в более позитивном свете: «Можем ли мы узнать то, что не можем знать?» Можем ли мы доказать, что у науки есть границы, точно так же, как К.Гёдель и А.Туринг доказали, что они есть у математики?

Философским и гносеологическим следствием великого открытия Гёделя является осознание неизбежной дилеммы, стоящей перед человеческим разумом в области оснований точных наук: либо тавтология (только тавтология!), либо (если система достаточно богата) - относительная непротиворечивость. На бытовом языке жизни выражение «ты не прав» может свидетельствовать лишь об ограниченности говорящего. Без элементов свободного допущения никакая достаточно богатая теория невозможна, так что любые утверждения науки всегда содержат в себе элемент относительности, непредсказуемости и неопределенности.

По словам П.Коэна, теорема Гёделя является величайшим, непреодолимым препятствием для любой попытки понять природу множественного и целого. Что до проблемы континуума и математических множеств, то теоремы Гёделя сделали проблему бесконечных множеств, с одной стороны, окончательно неразрешимой и, с другой, принципиально неотвергаемой: «Теорема Гёделя чрезвычайно затрудняет отстаивание той точки зрения, что высшие бесконечности можно попросту отвергнуть».

Несколько ранее в исследованиях Лёвенгейма и Скулема 1915-1920 годов (теорема Лёвенгейма-Скулема) обнаружен еще один обескураживающий факт: никакая аксиоматическая система не может быть категорична. Иными словами, при любой тщательности формулировки система аксиом, всегда найдётся интерпретация, совершенно не похожая на ту, ради которой эта система проектировалась. Это обстоятельство также подрывает веру в универсальность аксиоматического подхода.

Я не случайно заговорил об аксиоматике и математических множествах, потому что одной из главных проблем оснований математики является преодоление пропасти между дискретным и непрерывным, арифметикой и геометрией. Собственно, теория множеств возникла как способ описания континуума, однако детальное обследование проблемы континуум-множество (Г.Кантор, И.Кёниг, Д.Гильберт, К.Гёдель, П.Коэн, Э.Цермело, Т.Скулем, Н.Н.Лузин) выявило невозможность представления континуума любым, сколь угодно мощным множеством, что подвигло Г.Вейля на мысль, что континуум вообще не является множеством точек: континуум - среда свободного становления, которую невозможно исчерпать никакими множествами любых чисел.

Обнаруженный факт невозможности исчерпывающего и однозначного описания континуума как множества ведет к признанию в нем свойств нетривиальной целостности, которую следует понимать как отрицание и исключение всякой множественности. Эта целостность и единство в континууме есть свойства более сильные, чем обычная непрерывность множеств, они лежат как бы в ее основе.

Позже на неразрешимость проблемы континуум-множество наложились новые, потрясшие основы математики открытия: невозможности строгого и окончательного обоснования понятия вещественного числа, непротиворечивости континуума вещественных чисел, невозможности полностью формализованной математической теории как таковой. Математики средствами самой математики доказали существование абсолютно неразрешимых математических проблем, в частности проблемы континуум-множество. Так наука впервые столкнулась с Богом в самой себе - непознаваемостью целостного, реальным существованием кантовых ноуменов, «вещей в себе»...

Тем самым выяснилось, что сама математика зиждется на целом, неразложимом на элементы, неисчерпаемом никакими приемами человеческого ума. Если говорить точнее, человеческий разум может много добиться, оперируя с частями и множествами, но, двигаясь в глубь, упирается в непробиваемую бронь Первоединого.

Уже одного этого примера было бы достаточно, чтобы разрушить восходящее к Лейбницу и Декарту мнение, будто множество выводимых формул совпадает с множеством истинных формул. Но оставалась надежда, что выводимость лишь на немного меньше истинности, что недоказуемыми являются только экзотические формулы гёделевского типа, в которых зашифрованы утверждения, относящиеся к самим этим формулам. Но через пять лет был получен значительно более сильный результат - польско-американский математик Альфред Тарский доказал, что само понятие истинности логически невыразимо.

А.Тарский логически обосновал, что любая формальная система, в которой мы можем утверждать некое предложение и в то же время осмыслить истинность этого утверждения, неизбежно самопротиворечива. Следовательно, утверждение, что какая-либо теорема, данная в некотором формальном языке, истинна, может быть сделано лишь с помощью предложения, не имеющего смысла в этом языке. Такое утверждение образует часть языка более богатого, чем тот, который включает предложение, истинность которых утверждается.

Теорема Тарского, включающая в себя теорему Гёделя как частное следствие, наталкивает на мысль, что различие между истинностью и выводимостью довольно значительно. Но установить, насколько оно велико, удалось только сравнительно недавно, после многолетней совместной работы математиков многих стран, регулярно обменивавшихся промежуточными результатами. Все математические формулы были вначале разбиты на классы сложности, причем таким образом, что они расширялись, то есть в каждом следующем классе имелись не только все формулы предыдущего класса, но и некоторые новые. Значит, тут при поднятии верхней границы сложности количество формул реально возрастает. Затем было показано, что множество выводимых формул целиком содержится в нулевом классе. И, наконец, доказано, что множество истинных формул не помещается даже в тот предельный класс, который получается при стремлении показателя сложности к бесконечности. Известный математик Ю. Манин так прокомментировал эту ситуацию: «Выводимость находится на нижней ступеньке бесконечной лестницы, а истинность располагается где-то над всей лестницей». В общем, расстояние от выводимости до истинности настолько громадно, что, говоря в целом, ролью строгой логики в деле познания можно пренебречь.

Похоже, она нужна лишь для придания результату общепонятной и убедительной формы, а механизм получения результата совсем иной. Недаром от математиков нередко можно услышать фразу: сначала я понял, что эта теорема верна, а потом начал думать, как ее доказать. На что же опираются они в своем творчестве, природу которого объяснить, как правило, не могут? Ответ на этот вопрос подсказывается замечательной теоремой, доказанной в конце 70-х годов американцами Парисом и Харрингтоном. Из нее следует, что даже относительно простые арифметические истины невозможно установить, не прибегая к понятию актуальной бесконечности.
Что такое актуальная бесконечность? На обыденном языке - Запредельность, Бог...

Таким образом, даже в логике оказалась непреодолимой стена, которую пытаются преодолеть средствами данной логики. Оказалось, что существуют предложения, которые в принципе не могут быть доказаны в пределах логики, в которой они введены. Выяснилось, что логические и математические истины не являются «истинами во всех возможных мирах», что любая формальная система преобразований предполагает определенную онтологию и возможна только в ее рамках.

Я полагаю, что рассмотренные свидетельства математической логики - частные случаи экзистенциального мировоззрения, согласно которому окончательное доказательство чего бы то ни было невозможно; абсолютность и полнота недоступны самому изощренному человеческому уму; удел математика - остановиться где-то на каких-то ступеньках бесконечной лестницы, подобно лестнице Иакова уходящей в небеса. Даже самая высшая из существующих математик не способна полностью обосновать формальную теорию, или, иными словами, сколь бы изощренными ни были тенета, расставленные математикой, значительная часть мира «ускользнет» из них.

Кстати, Гёдель, как свидетельствуют его записные книжки, всю жизнь размышлял не только о математике, но о природе и пределах самого мышления, а также о проблеме существования абсолютно неразрешимых утверждений. Внутренне тяготея к парадоксам, он часто повторял: «Либо наш разум не является механическим, либо математика, даже арифметика, не является нашей собственной конструкцией». Позже эта «закрученная формулировка» стала предметом обширной полемики о соотношении ума и компьютера, особенно в связи с интерпретацией теорем о неполноте Геделя гениальным физиком Р.Пенроузом.

Гёдель считал, что философия математики должна стать частью самой математики, приобретая определенность, и в то же время теряя характер собственно философский.

Гёделевская «теорема о неполноте», согласно которой, как уже было сказано, не существует формальной теории, где были бы доказуемы все истинные теоремы арифметики, - только частный случай тотальной неполноты рационального человеческого разума, стремящегося подчинить бесконечность своим примитивным уловкам.

Сам Гёдель часто говорил о «незавершаемости или неисчерпаемости математики» и, возможно, впервые поставил вопрос, может ли этот процесс незавершаемости математики осуществляться конечной машиной или же только человеком. Если это доступно только человеку, тогда он действительно превосходит по своим возможностям конечную машину.

Ни строгое определение понятий, ни доказательство не являются продуктивными путями обретения принципиально нового знания. Позитивизм и логоцентризм привели к типичному для рационализма результату - схоластике и бесчисленным попыткам доказать больше, чем вообще можно доказать.

В итоге эссенциализм не только стимулировал пустые словопрения, но и привел к разочарованию в возможностях аргументации, а значит, и в возможностях разума.
Возможности аристотелевской логики ограничены, возможности человеческого разума безграничны. Даже сама логика не осталась неизменной: следуя за «неклассической» физикой, логика обогатилась рядом релятивистских, релевантных, вероятностных, паранепротиворечивых логик, трех- и четырехзначных логик, логик с не всюду определенным понятием истинности, с пересыщенными оценками и т. д., и т. п., что существенно изменило облик современной математики.

Что до самой математики, то она описывает мир не потому, что действительность имеет ту же структуру, что и математический формализм, но потому, что математика является просто одним из многих способов описания мира, верным до тех пор, пока не исключает другие. Планеты движутся по эллиптическим орбитам, да и то в первом приближении. Если бы дело было в одной математике, то орбиты могли быть любыми - уже до открытия их траекторий математика описала множество иных, не эллиптических «идеальных» путей.

Не выдержала испытания и концепция математики и физики как «знания без познающего субъекта», верного всегда и во всех мирах.

Законы логики и математики нельзя рассматривать вне зависимости от познающего субъекта. Например, анализ закона исключенного третьего с позиций квантовой механики и новейшего знания вообще показал, что даже самые твердо установленные истины или самые глубокие убеждения могут оказаться лишь идеальными проекциями нашего разума, а отнюдь не отражениями реальности.

Критерии научной рациональности не оправдались. Мы так и не знаем, можно ли считать открытия великих ученых рациональными и могут ли сами эти открытия служить критериями правильности теорий. Мы не знаем, как оценивать подготовительную работу признанных и непризнанных предшественников великих ученых...

Дискуссии о научной рациональности и успешности науки как возможности выбора метода, адекватно поставленной цели, зашли в тупик. Многое по-прежнему неясно.

Каковы критерии научной рациональности? Какие познавательные стандарты оценивать как «универсалии», а какие имеют исторически ограниченную область действия (например, ориентация на выдвижение фальсифицируемых теорий, избегание модификаций ad hoc, постулирующих ненаблюдаемые сущности; предпочтение предсказательных теорий теориям, обладающим красотой и изяществом, простотой; предпочтение количественных или качественных процедур анализа и т. п.)?

По мнению Й.Хейзинги, диктат рационализма остался в прошлом, наука его уже давно переросла: «Мы знаем, что не все можно мерить меркой разумности. Само поступательное развитие мышления научило нас, что одного разума бывает недостаточно. Взгляд на вещи более глубокий и разносторонний, нежели чистый рационализм, открыл нам в этих вещах дополнительный смысл».

По Карлу Попперу, гипотезы, положенные в фундамент познавательного процесса, релевантны; фальсифицируемы; более богаты по содержанию, нежели породившие их проблемы; консервативны (если обнаруживается подходящая гипотеза, то ученый пытается опровергнуть ее и сопротивляется любым попыткам отделаться от объяснений сложных случаев). Так или иначе, наука прогрессирует путем выдвижения предположений и их опровержения.

П.Фейерабенд считает, что попперовская схема развития не универсальна, иллюстрируя свою точку зрения следующими доводами:
1. Замена теории не всегда происходит как фальсификация. Так, в случае с системой Птолемея, или с электронной теорией Лоренца нельзя привести таких фактов, которые стимулировали отказ от этих систем.
2. Содержание теории, которую мы хотим проверить, и наше решение относительно фальсифицирующих примеров не столь независимы друг от друга, как это подразумевается в теории Поппера.
3. Переход от одной системы знания не всегда приводит к содержательному росту, как, например, переход к научной психологии, приведший к существенному сужению содержания.
4. Требование поиска опровергающих обстоятельств и серьезного к ним отношения может привести к устойчивому прогрессу тогда, когда опровергающие факты единичны и редки. Если же теория окружена «океаном аномалий», то правила фальсификации могут быть использованы только как временные, а отнюдь не необходимые условия научной рациональности.

П.Фейерабенд полагает, что рациональные схемы развития науки вообще неадекватны ее сущности и противоречат истории развития знания:

Понимание этапа в развитии науки подобно пониманию стилистического периода в истории искусств. Здесь наблюдается очевидное единство, но оно не может быть суммировано в нескольких простых правилах... Общее представление о таком единстве, или парадигма, будет, следовательно, бедным, и оно скорее порождает проблему, нежели обеспечивает ее решение,- проблему заполнения эластичной, но плохо определенной концептуальной системы постоянно изменяющимся конкретным историческим материалом.

Я хочу подчеркнуть, что сами критерии научности или ненаучности вполне могут носить внерациональный характер. Наряду с принципом фальсифицируемости Поппера, такими критериями следует считать претензии на единственность и универсальность теории. Прогресс науки - самое яркое свидетельство того, что единственность и универсальность тормозят развитие знания хотя бы по причине массовости завербованных данной парадигмой консерваторов-доктринеров, самостоятельно не способных «выйти за рамки» и потому препятствующих росткам нового. Единственность и универсальность - формы научного тоталитаризма, вооруженного всем арсеналом средств подавления еретичества и инакомыслия.

Что до научного консерватизма, то он свойствен даже выдающимся творцам науки: Д.И.Менделеев отказывался слушать доводы в пользу возможной трансформации элементов, Ч.Дарвин с присущей ему непоследовательностью, граничащей с беспринципностью, впадал в ламаркизм, Эйнштейн до конца жизни отказывал в правоте Бору и Гейзенбергу...

Упомянув имена Дарвина и Ламарка, я должен напомнить теории развития науки, принадлежащие Чарльзу Сандерсу Пирсу, считавшему, что эволюция знания может идти тремя путями:
- путем дарвиновской эволюции - медленными, случайными и незаметными изменениями в процессе борьбы за существование;
- путем ламаркистской эволюции - медленными, но закономерными изменениями в результате собственных устремлений индивидов;
- путем катаклизмов Кювье - внезапных скачков, связанных с резкими изменениями окружающей среды.

Чарльз Сандерс Пирс полагал, что как в эволюции жизни, так и в эволюции знания возможны все три типа эволюции, но среди них преобладает ламаркистский тип эволюции:

Ламаркистская эволюция может, к примеру, принять форму постепенной модификации наших взглядов для того, чтобы эти взгляды лучше соответствовали известным фактам, по мере того как накапливаются результаты наблюдения... поскольку эти модификации не являются случайными, а являются по большей части движениями по направлению к истинности... нет сомнения, что от десятилетия к десятилетию даже без каких-либо великолепных открытий или значительных успехов наука будет ощутимо продвигаться вперед.

В свете пирсовой теории эволюции науки концепция Карла Поппера явно относится к дарвиновскому типу и даже пользуется дарвиновским языком: научная конкуренция - борьба за выживание наиболее приспособленных теорий, шанс устоять при элиминации неадекватным гипотезам. Парадигмальная концепция Т.Куна - сочетание дарвиновской и ламаркистской эволюций: нормальная наука развивается по ламаркистскому направлению, революция в науке укладывается в дарвиновский подход. П.Фейерабенд, конечно же, сторонник Кювье: принцип пролиферации - торжество катаклизма, надо строить теорию, несовместимую с известными...

Строя логическую теорию правдоподобия, К.Поппер исходил из того, что следствиями истинного утверждения могут быть только истинные утверждения, тогда как среди следствий ложного утверждения могут встречаться как ложные, так и истинные.

Поскольку научные теории сменяют друг друга или опровергаются одна другой, любая теория, строго говоря, является ложной. Поэтому среди следствий любой теории могут быть и истинные, и ложные утверждения. Множество следствий теории Поппер именует логическим содержанием: истинные следствия теории образуют ее истинное содержание, оставшаяся часть является ложным содержанием. При сравнении двух разных теорий можно выяснить, что истинное содержание одной больше истинного содержания другой или что ложное содержание одной меньше ложного содержания другой. Таким образом, можно говорить о разной степени правдоподобия разных теорий. Развитие науки есть стремление к максимальному правдоподобию. Максимально правдоподобной для данного исторического периода будет теория, дающая наиболее исчерпывающее знание, то есть обладающая минимально ложным содержанием. Прогресс науки заключается в стремлении построения исчерпывающей теории, но реально можно создавать лишь более или менее правдоподобные теории.

Вообще говоря, любая теория применима лишь там, где применимы ее понятия. Это принципиально еще потому, что подчеркивает важность языка: невозможно прорваться в грядущее, не создав нового языка. Что до правдоподобия, то его условиями являются правильно выбранный язык, степень информативности и возможность подвергнуть идеи критике. Ученый, считает К.Поппер, никогда с уверенностью не может знать, истинны ли его предположения, но он должен уметь с достаточной определенностью обосновать ложность своих теорий. «Научные теории представляют собой подлинные предположения - высокоинформативные догадки относительно мира, которые хотя и не верифицируемы (то есть нельзя показать, что они истинны), но могут быть подвергнуты строгим критическим проверкам».

Таким образом, приходится признать, что абсолютная наука и абсолютная истина невозможны: окружающий мир, частью которого мы сами и являемся, сложен и не исчерпывается простыми объяснениями. Интерпретации, которые предлагает наука, являются частными, недостаточными и несовершенными. Абсолютный идеал науки - такое же заблуждение, как фанатизм рыцарей-конквистадоров, рвавшихся в Иерусалим «освобождать» гроб Господен. Но так же важно и другое: нет никакого "конца науки" или "конца истины". И те, кто игнорируют движение мысли, затыкают рты оппонентам, ориентируются на прошлое, в дремучем прошлом и остаются...

Возвращаясь к Курту Гёделю, я должен отметить, что его рационалистический оптимизм не исключал ни фактора человеческой субъективности, ни интитивности, ни априорности знания, ни даже элемента мистицизма. Весьма характерно признание математика и писателя Р.Рукера: «Я спросил Гёделя, верит ли он, что за всеми различными явлениями и действиями в мире стоит единый Ум. Он ответил утвердительно, и что Ум структурирован, но при этом Ум существует независимо от индивидуальных свойств. Тогда я спросил, верит ли он, что Ум находится везде, в противоположность тому, что локализуется в мозгах людей. Гёдель ответил: “Конечно. Это основа мистического учения”». Видный логик Раймонд Смаллиан, много делающий для популяризации математических достижений Гёделя, рассказал, что в одной из бесед с ним Гёдель произнес замечательную фразу «когда время созреет». В этом духе можно предположить, что Гёдель мог рассчитывать как рационалистический оптимист на то, что «однажды, но никак не ранее, время придет», когда не будет опасений перед абсолютно неразрешимыми проблемами.

Несколько слов о Гёделе-человке. Курт Гёдель родился в 1906 г. в Австро-Венгрии, в городе Брюнн (ныне Брно в Чехии). По завершению Венского университета и защиты диссертации остался там преподавателем. После аннексии Австрии он автоматически получил паспорт гражданина Германии, но, испытывая лютую ненависть к нацистам, бежал в США, получив предварительно приглашение занять пост в Принстонском институте перспективных исследований, где ранее обустроился А.Эйнштейн.

Несмотря на 27-летнюю разницу в возрасте и несовместимость темпераментов, Курт быстро сблизился с Эйнштейном. Каждый день их видели идущими вместе в Институт и обратно, увлеченными разговором, причем говорил в основном Гёдель. Известный математик Арман Борель вспоминал: «Я не знаю, о чем они разговаривали; наверное, о физике, ведь Гёдель в молодости занимался физикой. Больше они ни с кем не общались, разговаривали только друг с другом». А экономист Оскар Моргенштерн позже пересказал слова Эйнштейна: «Моя работа теперь не имеет никакого значения. Я хожу в Институт только для того, чтобы иметь удовольствие возвращаться домой вместе с Гёделем».

Как многие гении, Гёдель слыл редким эксцентриком, обладал необычными вкусами, страдал разными фобиями, одна из которых его погубила. Будучи человеком скрупулезным и дотошным, как и полагалось звезде математической логики, Гёдель был напрочь лишен чувства юмора и к любому, даже к самому незначительному практическому вопросу, подходил со «звериной серьезностью», что превращало общение с ним в муку для окружающих.

Фобии Гёделя к концу жизни переросли в паранойю. Он панически боялся отравления, в чем подозревал самых близких людей. К счастью, бывали и продолжительные периоды просветления. В один из них Курт Гёдель поразил Эйнштейна, преподнеся к его юбилейному сборнику статью, в которой он нашел неординарное решение уравнений общей теории относительности. Из его решения следовало, что возможно путешествовать во времени, в том числе вернуться в прошлое. Принято считать, что это решение математически непротиворечиво, но лишено физического смысла.

В конце концов токсикофобия Гёделя довершила свое злое дело. После смерти жены автор бессмертных теорем быстро довел себя до голодной смерти. В больнице, куда его доставили незадолго до кончины, врачи оказались бессильны. Они лишь констатировали смерть вследствие истощения, вызванного «распадом личности».

Из книги И.Гарина "Что такое наука?" Примечания и цитирования даны в тексте книги.

на тему: «ТЕОРЕМА ГЁДЕЛЯ»

Курт Гёдель

Курт Гёдель – крупнейший специалист по математической логике – родился 28 апреля 1906 г. В Брюнне (ныне г. Брно, Чехия). Окончил Венский университет, где защитил докторскую диссертацию, был доцентом в 1933–1938 гг. После аншлюса эмигрировал в США. С 1940 по 1963 г. Гёдель работал в Принстонском институте высших исследований. Гёдель – почетный доктор Йельского и Гарвардского университетов, член Национальной академии наук США и Американского философского общества.

В 1951 г. Курт Гёдель был удостоен высшей научной награды США – Эйнштейновской премии. В статье, посвященной этому событию, другой крупнейший математик нашего времени Джон фон Нейман писал : «Вклад Курта Гёделя в современную логику поистине монументален. Это – больше, чем просто монумент. Это веха, разделяющая две эпохи… Без всякого преувеличения можно сказать, что работы Гёделя коренным образом изменили сам предмет логики как науки».

Действительно, даже сухой перечень достижений Гёделя в математической логике показывает, что их автор по существу заложил основы целых разделов этой науки: теории моделей (1930 г.; так называемая теорема о полноте узкого исчисления предикатов, показывающая, грубо говоря, достаточность средств «формальной логики» для доказательства всех выражаемых на ее языке истинных предложений), конструктивной логики (1932–1933 гг.; результаты о возможности сведения некоторых классов предложений классической логики к их интуиционистским аналогам, положившие начало систематическому употреблению «погружающих операций», позволяющих осуществлять такое сведение различных логических систем друг другу), формальной арифметики (1932–1933 гг.; результаты о возможности сведения классической арифметики в интуиционистскую, показывающие в некотором смысле непротиворечивость первой относительно второй), теории алгоритмов и рекурсивных функций (1934 г.; определение понятия общерекурсивной функции, сыгравшего решающую роль в установлении алгоритмической неразрешимости ряда важнейших проблем математики, с одной стороны. И в реализации логико-математических задач на электронно-вычислительных машинах – с другой), аксиоматической теории множеств (1938 г.; доказательство относительной непротиворечивости аксиомы выбора и континуум-гипотезы Кантора от аксиом теории множеств, положившее начало серии важнейших результатов об относительной непротиворечивости и независимости теоретико-множественных принципов).

Теорема Гёделя о неполноте

Введение

В 1931 г. В одном из немецких научных журналов появилась сравнительно небольшая статья с довольно устрашающим названием «О формально неразрешимых предложениях Principia Mathematica и родственных систем». Автором ее был двадцатипятилетний математик из Венского университета Курт Гедель, впоследствии работавший в Принстонском институте высших исследований. Работа эта сыграла решающую роль в истории логики и математики. В решении Гарвардского университета о присуждении Гёделю почетной докторской степени (1952) она была охарактеризована как одно из величайших достижений современной логики.

Однако в момент опубликования ни название гёделевской работы. Ни содержание ее ничего не говорили большинству математиков. Упомянутые в ее названии Principia Mathematica – это монументальных трехтомный трактат Альфреда Норта Уайтхеда и Бертрана Рассела, посвященный математической логике и основаниям математики; знакомство с трактатом отнюдь не являлось необходимым условием для успешной работы в большей части разделов математики. Интерес к разбираемым в работе Гёделя вопросам всегда был уделом весьма немногочисленной группы учёных. В то же время рассуждения, приведенные Гёделем в его доказательствах, были для своего времени столь необычными. Что для полного их понимания требовалось исключительное владение предметом и знакомство с литературой, посвященной этим весьма специфическим проблемам.

Первая теорема о неполноте

Первая теорема Гёделя о неполноте , по всей видимости, является наиболее знаменательным результатом в математической логике. Она звучит следующим образом:

Для произвольной непротиворечивой формальной и вычислимой теории, в которой можно доказать базовые арифметические высказывания, может быть построено истинноеарифметическое высказывание, истинность которого не может быть доказана в рамках теории . Другими словами, любая вполне полезная теория, достаточная для представления арифметики, не может быть одновременно непротиворечивой и полной.

Здесь слово «теория» обозначает «бесконечное множество» высказываний, некоторые из которых полагаются истинными без доказательств (такие высказывания называются аксиомами), а другие (теоремы) могут быть выведены из аксиом, а потому полагаются (доказываются) истинными. Словосочетание «доказуемый в теории» обозначает «выводимый из аксиом и примитивов теории (константных символов алфавита) при помощи стандартной логики (первого порядка)». Теория является непротиворечивой (согласованной), если в ней невозможно доказатьпротиворечивое высказывание. Словосочетание «может быть построено» обозначает, что существует некоторая механическая процедура (алгоритм), которая может построить высказывание на основе аксиом, примитивов и логики первого порядка. «Элементарная арифметика» заключается в наличии операций сложения и умножения над натуральными числами. Результирующее истинное, но недоказуемое высказывание часто обозначается для заданной теории как «последовательность Гёделя», однако существует бесконечно количество других высказываний в теории, которые имеют такое же свойство: недоказуемая в рамках теории истинность.

Предположение о том, что теория вычислима, обозначает, что в принципе возможно реализовать компьютерный алгоритм (компьютерную программу), которая (если ей разрешено вычислять произвольно долгое врея, вплоть до бесконечности) вычислит список всех теорем теории. Фактически, достаточно вычислить только список аксиом, и все теоремы могут быть эффективно получены из такого списка.

Первая теорема о неполноте была озаглавлена как «Теорема VI» в статье Гёделя от 1931 года On Formally Undecidable Propositions in Principia Mathematica and Related Systems I . В оригинальной записи Гёделя она звучала как:

«Общий вывод о существовании неразрешимых пропозиций заключается в следующем:

Теорема VI .

Для каждого ω-согласованного рекурсивного класса k ФОРМУЛ существуют рекурсивные ЗНАКИ r такие, что ни (v Genr ), ни ¬(v Genr )не принадлежат Flg (k )(где v есть СВОБОДНАЯ ПЕРЕМЕННАЯ r ) ».

Обозначение Flg происходит от нем. Folgerungsmenge – множество последовательностей, Gen происходит от нем. Generalisation – обобщение.

Грубо говоря, высказывание Гёделя G утверждает: «истинность G не может быть доказана». Если бы G можно было доказать в рамках теории, то в таком случае теория содержала бы теорему, которая противоречит сама себе, а потому теория была бы противоречива. Но если G недоказуемо, то оно истинно, а потому теория неполна (высказывание G невыводимо в ней).

Это пояснение на обычном естественном языке, а потому не совсем математически строго. Для предоставления строгого доказательства, Гёдель пронумеровал высказывания при помощи натуральных чисел. В этом случае теория, описывающая числа, также принадлежит множеству высказываний. Вопросы о доказуемости высказываний представимы в данном случае в виде вопросов о свойствах натуральных чисел, которые должны быть вычислимы, если теория полна. В этих терминах высказывание Гёделя гласит, что не существует числа с некоторым определённым свойством. Число с этим свойством будет являться доказательством противоречивости теории. Если такое число существует, теория противоречива вопреки первоначальному предположению. Так что предполагая, что теория непротиворечива (как предполагается в посылке теоремы), получается, что такого числа не существует, и высказывание Гёделя истинно, но в рамках теории этого доказать невозможно (следовательно, теория неполна). Важное концептуальное замечание состоит в том, что необходимо предположить, что теория непротиворечива, для того чтобы объявить высказывание Гёделя истинным.

Вторая теорема Гёделя о неполноте

Вторая теорема Гёделя о неполноте звучит следующим образом:

Для любой формально рекурсивно перечислимой (то есть эффективно генерируемой) теории T, включая базовые арифметические истинностные высказывания и определённые высказывания о формальной доказуемости, данная теория T включает в себя утверждение о своей непротиворечивости тогда и только тогда, когда теория T противоречива.

Иными словами, непротиворечивость достаточно богатой теории не может быть доказана средствами этой теории. Однако вполне может оказаться, что непротиворечивость одной конкретной теории может быть установлена средствами другой, более мощной формальной теории. Но тогда встаёт вопрос о непротиворечивости этой второй теории, и т.д.

Использовать эту теорему для доказательства того, что разумная деятельность не сводится к вычислениям, пытались многие. Например, еще в 1961 году известный логик Джон Лукас (John Lucas) выступал с подобной программой. Его рассуждения оказались довольно уязвимыми – однако он и задачу ставил более широко. Роджер Пенроуз использует несколько другой подход, который излагается в книге полностью, «с нуля».

Дискуссии

Следствия теорем затрагивают философию математики, особенно такие формализмы, которые используют формальную логику для определения своих принципов. Можно перефразировать первую теорему о неполноте следующим образом: «невозможно найти всеохватывающую систему аксиом, которая была бы способна доказать все математические истины, и ни одной лжи ». С другой стороны, с точки зрения строгой формальности, эта переформулировка не имеет особого смысла, поскольку она предполагает понятия «истина» и «ложь» определёнными в абсолютном смысле, нежели в относительном для каждой конкретной системы.

Теорема Геделя о неполноте

Успенский В.А.

Пожалуй, теорема Геделя о неполноте является воистину уникальной. Уникальной в том, что на нее ссылаются, когда хотят доказать "все на свете" - от наличия богов до отсутствия разума. Меня всегда интересовал более "первичный вопрос" - а кто из ссылающихся на теорему о неполноте смог-бы не только сформулировать ее, но и доказать? Я публикую данную статью по той причине, что в ней изложена вполне доступная формулировка теоремы Геделя. Рекомендую предварительно ознакомиться со статьей Туллио Редже Курт Гедель и его знаменитая теорема

Вывод о невозможности универсального критерия истины является непосредственным следствием результата, полученного Тарским путем соединения теоремы Геделя о неразрешимости с его собственной теорией истины, согласно которому универсального критерия истины не может быть даже для относительно узкой области теории чисел, а значит, и для любой науки, использующей арифметику. Естественно, что этот результат применим a fortiori к понятию истины в любой нематематической области знания, в которой широко используется арифметика.

Карл Поппер

Успенский Влaдимиp Aндpеевич pодился 27 ноябpя 1930 г. в г. Москве. Окончил мехaнико-мaтемaтический фaкультет МГУ (1952). Доктоp физико-мaтемaтических нaук (1964). Пpофессоp, заведующий кaфедpой мaтемaтической логики и теоpии aлгоpитмов мехaнико-мaтемaтического фaкультетa (1966). Читает курсы лекций "Введение в математическую логику", "Вычислимые функции", "Теорема Геделя о полноте". Подготовил 25 кандидатов и 2 докторов наук

1. Постановка задачи

Теорема о неполноте, точную формулировку которой мы дадим в конце этой главки, а быть может позже (в случае возникновения к этому интереса у читателя) и доказательство, утверждает примерно следующее: при определенных условиях в любом языке существуют истинные, но недоказуемые утверждения.

Когда мы таким образом формулируем теорему, почти каждое слово требует некоторых пояснений. Поэтому мы начнем с того, что объясним значение слов, используемых нами в этой формулировке.

1.1. Язык

Мы не будем давать наиболее общее из возможных определений языка, предпочтя ограничиться теми языковыми концепциями, которые нам понадобятся впоследствии. Есть два таких понятия: "алфавит языка" и "множество истинных утверждений языка".

1.1.1. Алфавит

Под алфавитом мы понимаем конечный набор элементарных знаков (то есть - вещей, которые невозможно разбить на составные части). Эти знаки называются буквами алфавита. Под словом алфавита мы понимаем конечную последовательность букв. Например, обыкновенные слова в английском языке (включая имена собственные) являются словами 54-хбуквенного алфавита (26 маленьких букв, 26 прописных, тире и апостроф). Другой пример - натуральные числа в десятичной записи являются словами 10-тибуквенного алфавита, чьи буквы - знаки: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения алфавитов мы будем использовать обыкновенные заглавные буквы. Если L - алфавит, то L? будет обозначать множество всех слов алфавита L, - слов, образованных из его букв. Мы предположим, что любой язык имеет свой алфавит, так что все выражения этого языка (т. е. - имена различных объектов, утверждения относительно этих объектов и т.д.) являются словами этого алфавита. Например, любое предложение английского языка, равно как и любой текст, написанный по-английски, может рассматриваться как слово расширенного алфавита из 54-х букв, включающего также знаки пунктуации, междусловный пробел, знак красной строки и, возможно, некоторые другие полезные знаки. Предполагая, что выражения языка являются словами некоторого алфавита, мы, таким образом, исключаем из рассмотрения "многослойные" выражения типа???f(x)dx. Однако, это ограничение не слишком существенно, так как любое подобное выражение, при использовании подходящих конвенций, может быть "растянуто" в линейную форму. Любое множество М, содержащееся в L? называется словным множеством алфавита L. Если мы просто говорим, что М - словное множество, то мы подразумеваем, что оно является словом некоторого алфавита. Теперь сформулированное выше предположение о языке может быть перефразировано следующим образом: в любом языке любое множество выражений является словным множеством.

1.1.2. Множество истинных утверждений

Мы предположим, что нам задано подмножество Т множества L? (где L алфавит некоторого рассматриваемого нами языка), которое называется множеством "истинных утверждений" (или просто "истин"). Переходя непосредственно к подмножеству Т, мы опускаем следующие промежуточные шаги рассуждения: во-первых, какие именно слова алфавита L являются корректно образованными выражениями языка, то есть - имеющими определенное значение в нашей интерпретации этого языка (например, 2+3, х+3, х=у, х=3, 2=3, 2=2 являются корректно образованными выражениями, в то время как выражения типа +=х таковыми не являются); во-вторых, какие именно выражения являются формулами, т.е. могут зависеть от параметра (например, х=3, х=у, 2=3, 2=2); в третьих, какие именно из формул являются закрытыми формулами, т.е. утверждениями, не зависящими параметров (например, 2=3, 2=2); и наконец, какие именно закрытые формулы являются истинными утверждениями (например, 2=2).

1.1.3. Фундаментальная пара языка

1.2. "Недоказуемые"

"Недоказуемые" значит не имеющие доказательства.

1.3. Доказательство

Несмотря на то что термин "доказательство" является, возможно, одним из важнейших в математике (Бурбаки начинают свою книгу "Основания математики" словами: "Со времени древних греков сказать "математика" значило то же, что сказать "доказательство""), он не имеет своей точной дефиниции. В целом, понятие доказательства со всеми его смысловыми ответвлениями относится, скорей, к области психологии, нежели к математике. Но как бы то ни было, доказательство - это просто аргумент, который мы сами находим вполне убедительным для того, чтобы убедить всех остальных.

Будучи записано, доказательство становится словом в некотором алфавите Р, так же как любой английский текст является словом алфавита L, пример которого был приведен выше. Множество всех доказательств образуют подмножество (и довольно-таки обширное подмножество) множества Р?. Мы не будем пытаться дать точное определение этой одновременно "наивной" и "абсолютной" концепции доказательства, или - что равносильно - дать определение соответствующему подмножеству Р?. Вместо этого мы рассмотрим формальный аналог этого смутного понятия, для обозначения которого в дальнейшем мы все же будем пользоваться термином "доказательство". Этот аналог имеет две весьма важные особенности, кои отличают его от интуитивного понятия (хотя интуитивная идея доказательства все же отражает в некоторой степени эти особенности). Прежде всего мы допустим, что существуют разные концепции доказательства, то есть - допустимы разные подмножества доказательств в Р?, и даже больше того: мы, на деле, будем допускать, что сам алфавит доказательств Р может изменяться. Далее мы потребуем, чтобы для каждой такой концепции доказательства существовал эффективный метод, другими словами, алгоритм, который бы с необходимостью определял, является ли данное слово алфавита Р доказательством или нет. Мы также предположим, что существует алгоритм, с помощью которого всегда можно определить, какое именно утверждение доказывает данное доказательство. (Во многих ситуациях доказываемым утверждением просто является последнее утверждение в последовательности шагов, образующих доказательство.)

Таким образом, наша окончательная формулировка определения выглядит следующим образом:

(1) У нас имеются алфавит L (алфавит языка) и алфавит Р (алфавит доказательства).

(2) Нам дано множество Р, являющееся подмножеством Р?, и чьи элементы называются "доказательствами". В дальнейшем мы будем предполагать, что также у нас имеется алгоритм, который позволяет нам определить является ли произвольное слово алфавита Р элементом множества Р, то есть доказательством, или нет.

(3) Также у нас есть функция? (для нахождения того, что именно было доказано), чья область определения? удовлетворяет условию Р???Р?, и чья область значений находится в Р?. Мы предполагаем, что у нас есть алгоритм, который вычисляет эту функцию (точное значение слов "алгоритм вычисляет функцию" следующее: значения функции получаются при помощи этого алгоритма - набора специальных правил преобразования). Мы будем говорить, что элемент р? Р есть доказательство слова?(р) алфавита L.

Тройка <Р, Р, ?>, удовлетворяющая условиям (1)-(3) называется дедуктивной системой над алфавитом L.

Для читателя, знакомого с обычным способом определения "доказательства" в терминах "аксиома" и "правило вывода", мы сейчас поясним, как этот метод может рассматриваться в качестве специального случая определения, данного в параграфе 1.3.2. То есть - доказательство обычно определяется как последовательность таких выражений языка, каждое из которых является либо аксиомой, либо ранее полученным из уже существующих утверждений при помощи одного из правил вывода. Если мы добавим новое слово * к алфавиту нашего языка, то мы сможем записать такое доказательство в виде слова составленного при помощи полученного в результате такой модификации алфавита: последовательность выражений становится словом C1*C2*...*Cn. В таком случае, функция, определяющая, что именно было доказано, своим значением имеет часть этого слова, стоящую сразу за последней в последовательности буквой *. Алгоритм, существование которого требуется в части 1.3.2. определения, может легко быть сконструирован, как только мы точно определим какое-либо из принятых значений слов "аксиома" и "правила вывода".

1.4.Попытки точной формулировки теоремы о неполноте

1.4.1. Первая попытка

"При определенных условиях для фундаментальной пары языка алфавита L и дедуктивной системы <Р, Р, ?> над L - всегда существует слово в Т, не имеющее доказательства". Этот вариант все еще выглядит смутным. В частности, мы могли бы запросто придумать сколько угодно дедуктивных систем, имеющих очень немного доказуемых слов. Например, в пустой дедуктивной системе (где Р = ?) совсем нет слов, у которых были бы доказательства.

1.4.2. Вторая попытка

Есть другой, более естественный подход. Предположим, нам задан язык - в том смысле, что нам задана фундаментальная пара этого языка. Теперь мы будем искать такую дедуктивную систему над L (интуитивно, мы ищем технику доказательства), при помощи которой мы могли бы доказать как можно больше слов из Т, в пределе все слова из Т. Теорема Геделя описывает ситуацию, в которой такая дедуктивная система (посредством коей, каждое слово в Т было бы доказуемо) не существует. Таким образом, нам бы хотелось сформулировать следующее утверждение:

"При определенных условиях относительно фундаментальной пары не существует такой дедуктивной системы, в которой бы каждое слово из Т имело бы доказательство".

Однако такое утверждение, очевидно, ложно, так как необходимо лишь взять такую дедуктивную систему, в которой Р = L, Р = Р? и?(р) = р для всех р из Р?; тогда каждое слово из L? является тривиально доказуемым. Следовательно, нам нужно принять некоторое ограничение на то, какими дедуктивными системами мы пользуемся.

1.5. Непротиворечивость

Было бы вполне естественно потребовать, что только "истинные утверждения", то есть только слова из Т, могут быть доказаны. Мы будем говорить, что дедуктивная система <Р, Р, ?> является непротиворечивой относительно фундаментальной пары, если?(Р)?Т. Во всех последующих рассуждениях нас будут интересовать только такие непротиворечивые дедуктивные системы. Если же нам задан язык, то было бы чрезвычайно соблазнительно найти такую непротиворечивую дедуктивную систему, в которой каждое истинное утверждение имело бы доказательство. Интересующий нас вариант теоремы Геделя в точности утверждает, что при определенных условиях относительно фундаментальной пары, невозможно найти такую дедуктивную систему.

1.6. Полнота

Говорится, что дедуктивная система <Р,Р,?> полна относительно фундаментальной пары, при условии если?(Р)?Т. Тогда наша формулировка теоремы о неполноте приобретает следующий вид:

При определенных условиях относительно фундаментальной пары, не существует такой дедуктивной системы <Р,Р,?> над L, которая была бы одновременно полна и непротиворечива относительно.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://filosof.historic.ru

Идея доказательства заключается в том, чтобы построить такое выражение, которое свидетельствовало бы о своей

собственной недоказуемости. Такое построение может быть выполнено в три этапа:

Первый этап - установление соответствия между формальной арифметикой и множеством целых чисел (гедели-зации);

Второй этап - построение некоторого специального свойства о котором неизвестно, является ли оно теоремой формальной арифметики или нет;

Третий этап - подстановка в вместо х определенного целого числа, связанного с самим т. е. замещение этими числами всех

Первый этап. Геделизация формальной арифметики

Формальная арифметика может быть арифметизирована (т. е. геделизирована) следующим образом: каждой ее теореме ставится в соответствие некоторое число. Однако так как всякое число также является теоремой, то всякая теорема может рассматриваться, с одной стороны, в качестве теоремы формальной арифметики, а с другой - как теорема над множеством теорем формальной арифметики, т. е. в качестве метатеоремы, соответствующей доказательству некой теоремы.

Таким образом, можно сделать вывод, что система формальной арифметики содержит также и свою собственную метасистему.

Теперь более конкретно и подробно изложим полученные результаты.

Во-первых, мы можем связать с каждым символом и формальной арифметики специальное кодовое обозначение, называемое в данном случае геделевым номером

Во-вторых, каждой последовательности символов мы ставим в соответствие тот же геделев номер с помощью некоторой функции композиции Пусть где представляют собой последовательности символов, которые образуют

В-третьих (и это существенно), каждому доказательству последовательности аксиом и правил подстановки (или правил замещения) ставится в соответствие число где обозначает последовательность теорем, используемых при доказательстве

Таким образом, всякому доказательству в формальной арифметике соответствует некоторое число - его геделев номер Всякое рассуждение формальной ариметики преобразуется в вычисления на множестве натуральных чисел.

Итак, вместо того чтобы производить манипуляции с символами, теоремами, доказательствами, можно воспользоваться

вычислениями на множестве целых чисел. Всякое выражение, подобное, например, следующему: доказуемо в формальной арифметике", теперь соответствует определенному числу, которое будем обозначать как

Сформулируем следующее положение.

Формальная метаарифметика содержится в множестве натуральных чисел, а оно само содержится в интерпретации формальной арифметики.

Эта ситуация с формальной арифметикой напоминает ситуацию с естественным языком: ведь нам ничто не мешает использовать его и для того, чтобы формулировать на нем основные его понятия и правила.

Надлежащий выбор функции позволяет осуществить однозначный переход от А к т. е. присвоить два разных числа-номера двум различным доказательствам. Например, можно так выбрать геделевы номера, чтобы каждому символу алфавита формальной арифметики соответствовало свое простое число, как показано, например, в табл. 3.2.

Таблица 3.2

Каждая формула (состоящая из символов изменяющимся от 1 до в свою очередь кодируется последовательностью, состоящей из первых простых чисел, т. е. числом

где простое число.

В свою очередь доказательство, т. е. последовательность из формул будет закодирована аналогичным образом числом

И наоборот, благодаря такому способу построения номеров становится возможным, исходя из некоторого числа, с помощью разложения его на простые множители (в силу единственности разложения натуральных чисел в произведения степеней простых чисел) возвратиться за два шага к показателям степени т. е. к примитивным символам формальной арифметики. Конечно, это имеет в основном лишь теоретическое значение, так как номера быстро становятся слишком большими

для того, чтобы ими можно было манипулировать. Однако следует отметить, что существенным является принципиальная возможность этой операции.

Пример. Пусть задано число Т, соответствующее некоторому доказательству и представляющее собой произведение простых чисел:

Это разложение означает, что доказательство теоремы содержит два этапа: один соответствует числу 1981027125 253, а другой - числу 1981027125 211. Разлагая снова на простые множители каждое из этих чисел, получим

Из таблицы кодирования алфавита формальной арифметики (табл. 3.2) находим, что нашим геделевым номерам для Этих двух чисел

будет соответствовать следующее доказательство:

Из формулы следует формула

Таким образом, в метаарифметике получено значение исходного числа из формальной арифметики.

Второй этап. Лемма Геделя

Всякому числу Т, связанному с доказательством, соответствует теорема доказуемая в формальной арифметике. “Геделизированную” формальную арифметику называют арифметизированной формальной арифметикой. Поскольку каждая аксиома и каждое правило арифметизированной формальной арифметики соответствуют какой-нибудь арифметической операции, то с помощью систенатизированной проверки можно определить, соответствует ли данное число Т доказательству какой-то теоремы Числа Т и образуют в этом случае пару сопряженных чисел. Выражение и являются сопряженными” Представимо внутри самой арифметизированной формальной арифметики. Это означает, что существует геделев номер который выражает в цифровой форме это утверждение.

Мы подошли к критическому пункту доказательства Геделя. Пусть А является выражением арифметизированной формальной арифметики, которое содержит какую-то свободную переменную. Вместо нее можно сделать подстановку какого-нибудь терма. В частности, можно заменить выражение А самим выражением А. В этом случае номер-выражение А выполняет одновременно две различные роли (см. выше построения

Кантора и Ришара): оно одновременно является истинным выражением для подстановки и результирующим термом. Эту специальную подстановку будем обозначать как Так формула означает, что число есть геделев номер, получаемый при выполнении подстановки - к выражению А:

Затем Гедель строит выражение (о котором неизвестно, представляет ли оно собой теорему или не-теорему), в которое вводит эту подстановку. Выражение имеет следующий вид:

Третий этап. Завершающая подстановка

В арифметизированной формальной арифметике это выражение представлено в цифровой форме. Пусть Е - его геделев номер. Так как выражение содержит свободную переменную то мы имеем право выполнить подстановку - над замещая числом Е и обозначая -замещение Е:

Это второе выражение обозначим через а его геделев номер через Е. Дадим интерпретации выражения е.

Первая интерпретация. Не существует такой пары для которой одновременно выполнялось бы следующее: с одной стороны, Т - номер арифметизированного доказательства теоремы арифметизированной ею самой, а с другой - было бы есть замещение Но так как есть такое же преобразование, как и другие, то оно представимо в термах и в их кодовых обозначениях - геделевых номерах и, следовательно, такой номер существует. Тогда, возможно, номер Т не существует.

Вторая интерпретация. Не существует арифметизированного доказательства Т теоремы которое было бы -замещением Е. Итак, если не существует доказательства, то потому, что само по себе не является теоремой. Отсюда вытекает третья интерпретация.

Третья интерпретация. Выражение, для которого геделев номер есть -замещение Е, не является теоремой арифметизированной формальной арифметики. Но в этом и заключается противоречие, так как по построению именно само является -замещением Е и номер есть не что иное по построению, как сам номер Е. Отсюда вытекает последняя интерпретация е.

Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862–1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом - базовых утверждений, принимаемых в математике за основу без доказательств, - совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.

И тут в 1931 году какой-то венский очкарик - математик Курт Гёдель - взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:

«Если можно доказать утверждение A, то можно доказать и утверждение не-A».

Иными словами, если можно доказать справедливость утверждения «предположение 247 недоказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.

Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть, приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, - и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.

Итак, формулировка первой,или слабой теоремы Гёделя о неполноте: «Любая формальная система аксиом содержит неразрешенные предположения». Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте: «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)».

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность - исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный - никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения, и тест Тьюринга пройдет успешно.

Интересно, догадывался ли Гильберт, как далеко заведут нас его вопросы?

Курт ГЁДЕЛЬ
Kurt Gödel, 1906–78

Австрийский, затем американский математик. Родился в г. Брюнн (Brünn, ныне Брно, Чехия). Окончил Венский университет, где и остался преподавателем кафедры математики (с 1930 года - профессором). В 1931 году опубликовал теорему, получившую впоследствии его имя. Будучи человеком сугубо аполитичным, крайне тяжело пережил убийство своего друга и сотрудника по кафедре студентом-нацистом и впал в глубокую депрессию, рецидивы которой преследовали его до конца жизни. В 1930-е годы эмигрировал было в США, но вернулся в родную Австрию и женился. В 1940 году, в разгар войны, вынужденно бежал в Америку транзитом через СССР и Японию. Некоторое время проработал в Принстонском институте перспективных исследований. К сожалению, психика ученого не выдержала, и он умер в психиатрической клинике от голода, отказываясь принимать пищу, поскольку был убежден, что его намереваются отравить.

Комментарии: 0

    Как развивается научная модель в естественных науках? Накапливается житейский либо научный опыт, его вехи аккуратно формулируются в виде постулатов и образуют базу модели: набор утверждений, принимаемых всеми, кто работает в рамках этой модели.

    Анатолий Вассерман

    В 1930 году Курт Гедель доказал две теоремы, которые в переводе с математического языка на человеческий означают примерно следующее: Любая система аксиом, достаточно богатая, чтобы с ее помощью можно было определить арифметику, будет либо не полна, либо противоречива. Не полная система – это значит, что в системе можно сформулировать утверждение, которое средствами этой системы нельзя ни доказать, ни опровергнуть. Но Бог, по определению, есть конечная причина всех причин. С точки зрения математики это означает, что введение аксиомы о Боге делает всю нашу аксиоматику полной. Если есть Бог, значит любое утверждение можно либо доказать, либо опровергнуть, ссылаясь, так или иначе, на Бога. Но по Геделю полная система аксиом неизбежно противоречива. То есть, если мы считаем, что Бог существует, то мы вынуждены прийти к выводу, что в природе возможны противоречия. А поскольку противоречий нет, иначе бы весь наш мир рассыпался от этих противоречий, приходиться прийти к выводу, что существование Бога не совместимо с существованием природы.

    Сосинский А. Б.

    Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции в рамках проекта «Публичные лекции "Полит.ру"» раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.

    Успенский В. А.

    Лекции летней школы «Современная математика», г. Дубна.

    Успенский В. А.

    Лекция посвящена синтаксической версии Теоремы Гёделя о неполноте. Сам Гёдель доказал синтаксическую версию, используя более сильное, чем непротиворечивость, предположение, а именно так называемую омега-непротиворечивость.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Готовим говяжье легкое: лучшие рецепты Готовим говяжье легкое: лучшие рецепты Как готовить винегрет с фасолью Как готовить винегрет с фасолью Биография афанасия фета кратко самое главное для детей Биография афанасия фета кратко самое главное для детей